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Abstract

These are lecture notes for the stochastic calculus course at University
of Melbourne in Semester 1, 2021. They are designed at an introductory
level of the subject. We aim at presenting the materials in a moviated way
and developing the essential techniques at a minimal level of technicalities
while maintaining mathematical precision as much as possible. Only very
mild knowledge on probability measures and integration is needed, and all
relevant tools are recalled in the appendix.

We follow the classical route of first introducing martingale notions and
then using them to study Brownian motion and its stochastic calculus. As
a result, the entire development has a very strong flavour of martingale
methods. To keep the materials ideal for a one-semester course at an ele-
mentary level, we have omitted the discussion of several advanced but sig-
nificant topics such as local times, stochastic calculus for semi-martingales,
the Yamada-Watanabe theorem, martingale problems etc. One who is in-
terested in some of these topics and wishes to dive deeper into the subject
should consult the beautiful monographs [8, 9, 16, 20].

On the other hand, several approaches in these notes deviate from trandi-
tional texts. For instance, in the study of martingales, we adopt the elegant
approach of D. Williams to prove most of the basic martingale theorems
through gambling. For the construction of Brownian motion, we follow the
original approach of N. Wiener based on Fourier series. We use the idea
of Skorokhod’s embedding to motivate a quick proof of Donsker’s invari-
ance principle which in turn recovers the classical central limit theorem as
a byproduct. In the construction of stochastic integrals, our approach is
largely inspired by H. McKean in which the integrals are constructed in one
go via simple process approximations without the need of introducing any
localisation argument (local martingales). To keep things elementary, in the
construction of stochastic integrals we have to reluctantly give up the rather
elegant Hilbert space approach of D. Revuz and M. Yor from the duality
perspective. Any serious student should learn by him/herself this neat and
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deeper approach. For the Cameron-Martin-Girsanov’s theorem, we repro-
duce the original calculation of R. Cameron and W. Martin which enables
one to see how the particular shape of the transformation formula arises
naturally. In the study of stochastic differential equations, we emphasise
probabilistic properties of solutions as well as their applications rather than
delving into the abstract theory of existence and uniqueness.

Last but not the least, the best part of these notes is in no doubt the
list of exercises!
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1 Introduction and preliminary notions
In this chapter, we discuss some aspects of the motivation and introduce a few
preliminary notions. The core concept is the mathematical way of describing
the accumulation of information that evolves in time: filtrations and stopping
times. This is an essential feature of stochastic calculus that is quite different
from ordinary calculus.

1.1 Motivation

Stochastic calculus, in a restricted sense, is the theory of differential calculus for
Brownian motion. The fundamental ideas were essentially due to K. Itô in the
1940s. Since then, the theory has been under vast development by many proba-
bilists including several generations of Itô’s students. Apart from its theoretical
importance, the subject has also stimulated a wide range of applications in various
areas. Among others, the most well-known application is the pricing of financial
derivatives. We use two examples to motivate some of the fundamental ideas in
stochastic calculus.

1.1.1 A toy stock pricing model

Consider a particular stock A. Let Xt (t > 0) denote its price at time t. The
determination of Xt is subject to many external random factors. As a result, for
each t > 0 the quantity Xt should be viewed as a random variable. What is a
natural model describing the dynamics of Xt as a (random) function of t?

We first look at a simplified situation where time is discrete, say t = 0, 1, 2, · · · .
In this case, the price dynamics becomes a discrete sequence of random vari-
ables {Xn : n = 0, 1, 2, · · · }. As a toy model, we postulate that the price change
Xn+1 − Xn in the next day relative to current price Xn is governed by two fac-
tors: a deterministic trend and a random perturbation. Mathematically, this is
formulated as

Xn+1 −Xn

Xn

= µ+ σ · ξn+1, n = 0, 1, 2, · · · . (1.1)

Here µ is a deterministic real number representing the intrinsic trend of relative
price change. If µ > 0, the stock price tends to be increasing on average and
otherwise if µ < 0. The quantity σ · ξn+1 is a random variable representing an
external random force acting on the price change. Let us assume that {ξn :
n > 1} is an independent and identically distributed sequence with the two-point
distribution
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P(ξn = 1) = P(ξn = −1) =
1

2
.

The factor σ > 0 is a deterministic number so that σ·ξn+1 quantifies the magnitude
of the random kick on the relative price change. The larger σ is, the variance of the
random perturbation gets larger, making the stock price more uncertain (risky).

To make the model more realistic, we shall treat time continuously. In this
case, the discrete model (1.1) needs to be turned into an infinitesimal description:

Xt+δt −Xt

Xt

= µ · δt+ σ · δBt, (1.2)

where {Bt : t > 0} is a suitable stochastic process such that δBt = Bt+δt − Bt

resembles an infinitesimal analogue of the random perturbation ξn+1. To motivate
the shape of Bt, we first define the partial sum sequence

Sn , ξ1 + · · ·+ ξn, n > 1.

Geometrically, {Sn : n > 1} is a simple random walk on the set of integers. Note
that ξn+1 = Sn+1−Sn is the “discrete differential” of Sn. It is now natural to think
of the process {Bt} as a “continuum limit” of the random walk {Sn} normalised
in a suitable way.

To understand this limiting procedure, let us restrict ourselves to the time
horizon [0, 1]. Given m > 1, we divide [0, 1] into m equal sub-intervals each with
length 1/m. One can naively construct an “approximating” continuous process
{B̃(m)

t } on [0, 1] by linearly interpolating the random walk over the partition, i.e.
by defining

B̃
(m)
k/m , Sk, k = 0, 1, 2, · · · ,m

and requiring that B̃(m) is linear on each sub-interval [(k− 1)/m, k/m]. However,
this construction cannot converge in any sense (as m→∞), since

Var[B̃
(m)
1 ] = Var[Sm] = m→∞.

To expect convergence, one needs to rescale the process B̃(m)
t suitably. If we divide

B̃(m) by
√
m, from the central limit theorem we know that

B̃
(m)
1√
m

=
Sm√
m

dist→ N(0, 1) as m→∞.
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Figure 1.1: Random walks and Brownian motion.

Therefore, we should revise the definition of B̃(m)
t to be

B
(m)
t ,

B̃
(m)
t√
m
, t ∈ [0, 1].

It can then be shown that this sequence of processes {B(m)
t : t ∈ [0, 1]} converges

to some limiting process {Bt : t ∈ [0, 1]} in a suitable distributional sense as
m→∞. Figure 1.1 provides the intuition.

The limiting process {Bt} is known as the Brownian motion. It is not hard
to convince ourselves that Bt ∼ N(0, t) for each t. Indeed, by the central limit
theorem one has

B
(m)
t =

B̃
(m)
t√
m

=
√
t · Stm√

tm

d→
√
t ·N(0, 1) = N(0, t)

as m→∞. In a similar way, one can heuristically see that Bt−Bs ∼ N(0, t− s)
for s < t and these increments are independent over disjoint time intervals. The
Brownian motion plays a fundamental role in the theory of stochastic calculus
and will be the central object of study in the next chapter.

In terms of the Brownian motion, the infinitesimal equation (1.2) for the stock
price can be rewritten as

dXt = µXtdt+ σXtdBt.
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This is an example of a stochastic differential equation (SDE). The renowned
Black-Scholes option pricing formula is based on the use of such an SDE (cf.
Section 5.2).

SDEs arise naturally in the description of the time evolution of systems that are
subject to random perturbations. Understanding the meaning of these equations
as well as properties of their solutions is a main objective of stochastic calculus.
The theory is not a simple extension of ordinary calculus and requires new ideas,
as the Brownian motion is a highly irregular (random) function and the differential
dBt makes no sense from the viewpoint of ordinary calculus.

1.1.2 Heat transfer and temperature distributions

Consider a rod of infinite length (modelled by the real line R). The initial tem-
perature distribution of the rod at time t = 0 is given by a function f(x) (namely,
f(x) represents the initial temperature at position x ∈ R). Suppose that heat
transfers freely along the rod without any external heat source. How can we find
the temperature distribution u(t, x) of the rod at each time t > 0? From physi-
cal principles, u(t, x) is the solution to the following partial differential equation
(PDE) {

∂u
∂t

= 1
2
∂2u
∂x2
, t > 0,

u(0, x) = f(x).

The solution to the above PDE can be constructed in terms of the Brownian
motion. Indeed, for each given x ∈ R, let {Bx

t : t > 0} be a Brownian motion
starting at the position x. Then one has

u(t, x) = E[f(Bx
t )], t > 0, x ∈ R. (1.3)

Heuristically, the average value of the initial temperature distribution f over the
Brownian motion at time t with starting position x gives the temperature u(t, x).

This result extends to higher dimensions naturally.
Next, we consider a variant of the problem. Let D ⊆ R2 be a flat plate

with boundary ∂D (e.g. a disk in R2). There is an external heat source acting
on the boundary ∂D so that the temperature distribution over ∂D is fixed by
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a given function f : ∂D → R for all time. Suppose that heat transfers freely
within the interior of the plate. After a sufficiently long period, what is the
equilibrium temperature distribution inside the plate? From physical principles,
the equilibrium temperature distribution u : D → R satisfies the following PDE:{

∆u(x) = 0, x ∈ D,
u(x) = f(x), x ∈ ∂D,

(1.4)

where ∆ , ∂2

∂x21
+ ∂2

∂x22
denotes the Laplace operator. The solution to this PDE can

also be constructed by using the Brownian motion in R2. More precisely, for each
given x = (x1, x2) ∈ D, let {Bx

t : t > 0} be a two-dimensional Brownian motion
starting at the position x. Define

τ , inf{t > 0 : Bx
t ∈ ∂D}

to be the first time that the motion reaches the boundary of the plate. Then the
solution to the PDE (1.4) is given by

u(x) = E[f(Bx
τ )], x ∈ D.

Note that Bx
τ ∈ ∂D so that f(Bx

τ ) is well-defined.

The above two problems do not involve the use of an SDE. However, it becomes
relevant if the environment is not modelled by an Euclidean space (e.g. if the rod
is curved or if the plate is a bended surface). In this case, in the PDE description
of the temperature distribution, the Laplace operator needs to be replaced by a
more general second order differential operator (say in the one-dimensional case):

A =
1

2
a(x)

d2

dx2
+ b(x)

d

dx
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with some suitable coefficient functions a(x), b(x) that are related the geometry
of the object. To obtain the PDE solution, the process Bx

t used in the above
construction needs to be replaced by the solution to the SDE{

dXt = b(Xt)dt+
√
a(x)dBt,

X0 = x,

where Bt is the Brownian motion.

We will revisit these motivating problems when we are acquainted with more
tools from stochastic calculus.

1.2 Filtrations, stopping times and stochastic processes

Stochastic differential equations are used to describe the time evolution of random
systems. Before studying them precisely, it is important to first have a mathemat-
ical way of describing the accumulation of information in the evolution of time.
This leads us to the notion of filtrations.

From probability theory, we know that the proper mathematical way of de-
scribing information is through a σ-algebra. Let Ω be the underlying sample space.
A class F of subsets is called a σ-algebra over Ω, if it is stable under natural set
operations, more precisely, if

(i) Ω ∈ F ;
(ii) A ∈ F =⇒ Ac ∈ F ;
(iii) An ∈ F for all n =⇒ ∪∞n=1An ∈ F .

Heuristically, a σ-algebra F represents a collection of information. A subset
A is F -measurable (i.e. A ∈ F) means that knowing the information provided
by F , one can determine whether the event A happens or not at each random
experiment. More generally, a function X : Ω → R is F -measurable means that
knowing the information provided by F , for each a ∈ R one can decide whether
X 6 a or not. In particular, one is then able to determine the value of X at each
experiment. These interpretations (along with many others to be given in the
sequel) are not mathematically precise. However, they are useful for developing
the essential intuition behind the precise mathematical formulations.

Filtrations

The notion of a single σ-algebra does not take into account the evolution of time.
To capture this situation, one can consider a family of σ-algebras which grows as
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time increases.

Definition 1.1. Let Ω be a given sample space. A filtration over Ω is a family
{Ft : t > 0} of σ-algebras such that

Fs ⊆ Ft ∀s 6 t.

Heuristically, Ft represents the accumulative information up to time t. In most
situations, it is assumed that there is a given ultimate σ-algebra F (the totality
of information) and all the Ft’s are contained in F . There is also a probability
measure P defined on F , i.e. a set function P : F → [0, 1] that satisfies:

(i) P(A) > 0 for all A ∈ F ;
(ii) P(Ω) = 1;
(iii) for any sequence {An : n > 1} ⊆ F of disjoint events (i.e. Am ∩An = ∅ when
m 6= n), one has

P(∪∞n=1An) =
∞∑
n=1

P(An).

In probability theory, we call the triple (Ω,F ,P) a probability space. When it
is equipped with a filtration {Ft : t > 0}, we often refer to (Ω,F ,P; {Ft}) as a
filtered probability space.

Example 1.1. Although we are mostly interested in the continuous-time situ-
ation, we can also consider the discrete-time situation (i.e. the index set being
N = {0, 1, 2, · · · }). The definition of a filtration can be easily adapted to this
case. As an example, consider the random experiment of tossing a coin repeat-
edly without stopping. The sample space Ω is defined by

Ω = {ω = (ω1, ω2, · · · ) : ωn = H or T for each n}.

In other words, each generic outcome is an infinite sequence in which the n-th entry
records the result of the n-th toss. A natural σ-algebra F over Ω (the family of
all legal events) should be the information generated by all the finite-step results.
To be precise, for each n > 1 we define

An , {ω : ωn = H}, Bn , {ω : ωn = T}.

An and Bn are the events corresponding to a specific result (“head” or “tail”) at
the n-th toss. All these events An, Bn’s should be included as legal events in F .
As a result, we can define F as the σ-algebra generated by the events

A1, B1, A2, B2, A3, B3 · · · ,
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i.e. the smallest σ-algebra containing all the events in the above list. This σ-
algebra F consists of the totality of information for the underlying random exper-
iment. A natural choice of filtration is given by the results up to a specific step.
More precisely, for each n > 1, we can define Fn to be the σ-algebra generated by
the events

A1, B1, · · · , An, Bn.

This is precisely the accumulative information provided by the first n tosses.
We can also set F0 , {∅,Ω} (the trivial information) as there is no meaningful
information encoded at the initial time before the start of tossing. {Fn : n > 0}
defines a filtration over Ω. The construction of a probability measure P on F
requires the use of measure theory (Carathéodory’s measure extension theorem).
The main idea is that P should satisfy (assuming that the coin is fair)

P({ω : ω1 = a1, · · · , ωn = an}) =
1

2n
(1.5)

for any arbitrary n and any choices of a1, · · · , an = H or T. The measure extension
theorem ensures the existence of a unique probability measure P on F that satisfies
(1.5).

Stopping times

Sometimes we may consider information accumulated up to a random time rather
than a deterministic time t. For instance, when predicting the behaviour of a
volcano one relies on the dynamical data/information up to the next time of its
eruption. However, the next eruption time is itself a random variable. In this case,
we are talking about information up to a random time. The notion of a random
time already appears in the discussion of the equilibrium temperature distribution
in Section 1.1.2, where we have expressed the PDE solution in terms of the first
time that the Brownian motion reaches the boundary. Since the Brownian motion
is random, this hitting time is also a random variable.

Let (Ω,F ,P; {Ft}) be a given filtered probability space. By a random time
we shall mean a function τ : Ω → [0,+∞]. Allowing τ to achieve infinite value
is convenient since it may not always be the case that τ is finite. In the volcano
example, it is a theoretically possible outcome that the volcano never erupts in
the future (τ(ω) = +∞). Similar to the notion of random variables, to study its
probabilistic properties one often needs to impose suitable measurability condition
on a random time. Such a condition should respect the information flow given by
the filtration {Ft}.
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Definition 1.2. A random time τ : Ω → [0,+∞] is said to be an {Ft}-stopping
time, if

{ω ∈ Ω : τ(ω) 6 t} ∈ Ft ∀t > 0. (1.6)

The idea behind the measurability condition (1.6) can be described as follows.
For each given time t, suppose that we know the accumulative information up to
time t. Then we are able to determine whether the event {τ 6 t} occurs or not. If
it is the case that τ 6 t, we can actually determine the exact value of τ. Indeed,
since we can decide whether {τ 6 s} happens for every s ∈ [0, t] (the information
up to s is also known as part of Ft), the value of τ can then be extracted from
the turning point s at which {τ 6 s} happens while {τ 6 s − ε} fails for any
ε > 0. On the other hand, if it is the case that τ > t, no further implication
on the value of τ can be made. In the volcano example, if we have observed its
activity continuously for 100 days, we certainly know whether the volcano has
erupted within this period of 100 days (i.e. τ 6 100) or not. If it does the given
data should further tell us the exact eruption time, while if does not we cannot
determine its eruption time by using the given information.

Apparently, every deterministic time is an {Ft}-stopping time. Moreover, one
can construct new stopping times from the given ones. We use the notation a∧ b
(respectively, a∨ b) to denote the minimum (respectively, the maximum) between
two numbers a, b.

Proposition 1.1. Suppose that σ, τ, τn are {Ft}-stopping times. Then

σ + τ, σ ∧ τ, σ ∨ τ, sup
n
τn

are all {Ft}-stopping times.

Proof. We only consider σ + τ and leave the other cases as an exercise. Consider
the following decomposition:

{σ + τ > t} = {σ = 0, τ > t} ∪ {0 < σ < t, σ + τ > t}
∪ {σ > t, τ > 0} ∪ {σ > t, τ = 0}. (1.7)

The first and last events on the right hand side of (1.7) are clearly Ft-measurable.
The third event is in Ft because

{σ < t} =
⋃
n>1

{
σ 6 t− 1

n

}
∈ Ft.
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For the second event, note that

ω ∈ {0 < σ < t, σ + τ > t} =⇒ τ(ω) > t− σ(ω) > 0.

Since σ(ω) > 0, one can choose r ∈ (0, t) ∩Q, such that

τ(ω) > r > t− σ(ω).

As a result, we see that

{0 < σ < t, σ + τ > t} =
⋃

r∈(0,t)∩Q

{τ > r, t− r < σ < t} ∈ Ft.

It is helpful to re-examine the above property from the heuristic perspective.
Let t > 0 be given and suppose that we know the accumulative information up
to t. The criterion of being a stopping time is to see if we can decide whether
{σ + τ 6 t} happens or not. Since σ, τ are both stopping times, the following
scenarios are all decidable:

σ 6 t, σ > t, τ 6 t, τ > t.

If it is determined that either {σ > t} or {τ > t} happens, then one decides that
σ + τ > t since both σ, τ are non-negative. If it is determined that σ 6 t and
τ 6 t, from the previous discussion on the definition of stopping times we know
that the exact values of σ and τ are both decidable. As a result, the value of
σ + τ can then be determined, which certainly allows us to decide if {σ + τ 6 t}
happens or not.

One can use this kind of heuristic argument to discuss the other cases in
Proposition 1.1. It also allows us to see e.g. why σ − τ may not necessarily be a
stopping time (assuming σ > τ). Indeed, we again suppose that the information
up to t is presented. If one finds that σ 6 t, then {σ− τ 6 t} happens. However,
if one finds that σ > t, no further implication on the value of σ can be made.
In this case, σ − τ can either be smaller or larger than t and the occurrence of
{σ − τ 6 t} is not decidable.

The most important class of stopping times is related to hitting times of a
stochastic process (e.g. the one appearing in the plate heat transfer example).
We will discuss this shortly after introducing the notion of stochastic processes.
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σ-algebra at a stopping time

Let τ be a given {Ft}-stopping time. Recall that Ft represents the information
up to (the deterministic) time t. To generalise this idea, it is natural to talk
about the accumulative information up to the stopping time τ. Mathematically,
this should be defined by a suitable σ-algebra denoted as Fτ .

The essential idea behind defining this σ-algebra is described as follows. First
of all, an event A ∈ Fτ means that knowing the information up to τ allows us to
determine whether A happens or not. To rephrase this point properly in terms of
the filtration {Ft}, let t be a given fixed deterministic time. Suppose that we know
the information up to time t. Since τ is a stopping time, we can determine whether
{τ 6 t} has occurred or not. If it is the first case, the information up to τ is then
known to us since we are given the information up to t and we have determined
that τ 6 t. In this scenario, we can decide whether A occurs or not. If it happens
to be the second case (τ > t), since we only have the information up to t, the
information over the period [t, τ ] is missing and we should not be able to decide
whether A occurs in this scenario. To summarise, given the information up to time
t, it is only in the scenario {τ 6 t} are we able to determine whether A occurs
or not. This heuristic argument leads us to the following precise mathematical
definition.

Definition 1.3. Let (Ω,F ,P; {Ft}) be a filtered probability space and let τ be
an {Ft}-stopping time. The σ-algebra at the stopping time τ is defined by

Fτ , {A ∈ F : A ∩ {τ 6 t} ∈ Ft ∀t > 0}.

The following fact justifies the definition of Fτ .

Proposition 1.2. The set class Fτ is a σ-algebra.

Proof. (i) Since τ is a stopping time, for each t > 0 we have

Ω ∩ {τ 6 t} = {τ 6 t} ∈ Ft.

Therefore, Ω ∈ Fτ .
(ii) Suppose A ∈ Fτ . Given an arbitrary t > 0, note that both of {τ 6 t} and
A ∩ {τ 6 t} belong to Ft. As a result,

Ac ∩ {τ 6 t} = {τ 6 t}\
(
A ∩ {τ 6 t}

)
∈ Ft.

Therefore, Ac ∈ Ft.
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(iii) Let An ∈ Fτ (n > 1). For each t > 0, we have(
∪∞n=1 An

)
∩ {τ 6 t} = ∪∞n=1

(
An ∩ {τ 6 t}

)
∈ Ft

since An ∩ {τ 6 t} ∈ Ft for all n. Therefore, ∪∞n=1An ∈ Fτ .

If τ ≡ t is a deterministic time, one can check by definition that Fτ = Ft. In
general, we have the following basic properties of Fτ .

Proposition 1.3. Suppose that σ, τ are two {Ft}-stopping times.

(i) Let A ∈ Fσ. Then A ∩ {σ 6 τ} ∈ Fτ . In particular, if σ 6 τ then Fσ ⊆ Fτ .
(ii) We have Fσ∧τ = Fσ ∩ Fτ . In addition, the events

{σ < τ}, {σ > τ}, {σ 6 τ}, {σ > τ}, {σ = τ}

are all Fσ ∩ Fτ -measurable.

Proof. (i) Let t > 0. Then we have

A ∩ {σ 6 τ} ∩ {τ 6 t}
= A ∩ {σ 6 τ} ∩ {τ 6 t} ∩ {σ 6 t}
=
(
A ∩ {σ 6 t}

)
∩ {τ 6 t} ∩ {σ ∧ t 6 τ ∧ t}. (1.8)

Since A ∈ Fσ, by definition A ∩ {σ 6 t} ∈ Ft. In addition, {τ 6 t} ∈ Ft as τ is a
stopping time. For the last event in (1.8), the main observation is that both σ ∧ t
and τ ∧ t are Ft-measurable. Indeed, for any s > 0 one has

{σ ∧ t 6 s} =

{
{σ 6 s} ∈ Fs ⊆ Ft, if s < t;

Ω ∈ Ft, if s > t.

This shows the Ft-measurability of σ ∧ t (and the same for τ ∧ t). In particular,
{σ∧ t 6 τ ∧ t} ∈ Ft. We now see that the event defined by (1.8) is Ft-measurable,
and the claim follows from the definition of Fτ .
(ii) Since σ ∧ τ is an {Ft}-stopping time, from Part (i) we know that Fσ∧τ ⊆
Fσ ∩ Fτ . Conversely, let A ∈ Fσ ∩ Fτ . Then we have

A ∩ {σ ∧ τ 6 t} = A ∩ ({σ 6 t} ∪ {τ 6 t})
= (A ∩ {σ 6 t}) ∪ (A ∩ {τ 6 t}) ∈ Ft.
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Therefore, A ∈ Fσ∧τ . To prove the last claim, first note that (take A = Ω in Part
(i))

{τ < σ} = {σ 6 τ}c ∈ Fτ .

By replacing τ with σ ∧ τ in the above relation, we find

{τ < σ} = {σ ∧ τ < σ} ∈ Fσ∧τ = Fσ ∩ Fτ .

All the other cases follow by symmetry and taking complement.

Remark 1.1. By taking σ ≡ t, we have

{τ 6 t} ∈ Fτ∧t ⊆ Fτ ∀t > 0.

In particular, τ is Fτ -measurable.

One can re-examine the property A ∩ {σ 6 τ} ∈ Fτ from the heuristic per-
spective. Suppose that the information up to τ is presented. If the event {σ 6 τ}
occurs, the information up to σ is also known, and the occurrence of A is then
decidable as A ∈ Fσ. This is just recapturing the intuition behind the definition
of Fσ in a more general context.

Stochastic processes and their natural filtrations

Most of the basic objects in our study (Brownian motion, martingales, stochastic
integrals, stochastic differential equations) are examples of a stochastic process.

Definition 1.4. A real-valued (continuous-time) stochastic process is a family
{Xt : t > 0} of random variables defined on a given probability space (Ω,F ,P).

Remark 1.2. One can allow the index set to be of any shape. In our study, unless
otherwise stated we always assume that the index set is T = [0,∞), so that t ∈ T
is interpreted as time and the stochastic process {Xt} describes the time evolution
of a random system.

Let X = {Xt : t > 0} be a given stochastic process on (Ω,F ,P). By definition,
Xt : Ω→ R is a random variable for each t. There is a more useful way of looking
at a stochastic process: for each given ω ∈ Ω, one obtains a function

[0,∞) 3 t 7→ Xt(ω).

This function (as a function of time) is called the sample path of the process X at
the sample point ω. Note that the sample path depends on ω: one obtains different
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sample paths for different ω’s. As a result, the function t 7→ Xt is considered as
a random function of time. Equivalently, a stochastic process can be viewed as a
“random variable” ω 7→ X·(ω) = [t 7→ Xt(ω)] taking values in the space of paths.

Figure 1.2: Sample paths of a stochastic process.

Under this viewpoint, for theoretical reasons one often needs to impose certain
regularity assumptions on the sample paths. In most situations in our study,
we shall assume that all sample paths of the underlying stochastic process are
continuous functions of time. In this case, the process can be viewed as a “random
variable” taking values in the space of continuous functions on [0,∞). Nonetheless,
we point out that the theory of stochastic calculus for discontinuous processes (e.g.
Lévy processes) is a rich subject of study. We do not discuss this situation in the
current notes (cf. [2] for a general introduction).

It is often important to consider the relation between a stochastic process and
a given filtration of information.

Definition 1.5. Let (Ω,F ,P; {Ft}) be a filtered probability space and let X =
{Xt} be a given stochastic process. We say that X is {Ft}-adapted, if Xt is
Ft-measurable for each t > 0.

By the definition of adaptedness, given the information up to t we are able to
determine the value ofXt. However, the more useful observation is the following. If
we know the information up to t, then for every s 6 t we also have the information
up to s (since Fs ⊆ Ft). As a result, the value of Xs can be determined (for every
s 6 t). In other words, the information up to t allows us to determine the entire
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trajectory s 7→ Xs over the period [0, t]. Adaptedness is a basic condition that is
assumed in most situations.

Given a stochastic process X = {Xt}, one can construct an associated natural
filtration to encode the intrinsic accumulative information provided by X.

Definition 1.6. The natural filtration of the process X = {Xt} is defined by

FXt , σ({Xs : 0 6 s 6 t}), t > 0,

where the right hand side denotes the smallest σ-algebra containing the following
events:

{Xs 6 a} with 0 6 s 6 t, a ∈ R.

Mathematically, FXt is the smallest σ-alegbra with respect to which all the
Xs’s (0 6 s 6 t) are measurable. Heuristically, FXt is the intrinsic information
carried by the trajectory of the process over the period [0, t]. It is trivial that X
is always adapted to its natural filtration.

There is no reason to restrict ourselves to real-valued stochastic processes
only. One can also consider stochastic processes taking values in Rd (i.e. the
position of a gas molecule at each time t has a stochastic process in R3). To
conclude this section, we introduce an important example of stopping times. Let
X = {Xt} be an Rd-valued stochastic process defined on a filtered probability
space (Ω,F ,P; {Ft}). We assume that X is {Ft}-adapted.

Proposition 1.4. Suppose that every sample path of X is a continuous function.
Let F be a given closed subset of Rd. Define

τ , inf{t > 0 : Xt ∈ F}

to the first time that the process hits the set F. Then τ is an {Ft}-stopping time.

Proof. Let t > 0 be given. Let us first observe that

{τ > t} = {d(X[0, t], F ) > 0}, (1.9)

where d(X[0, t], F ) denotes the distance between the image of X on [0, t] and the
set F.
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Indeed, if τ > t, then X([0, t]) ∩ F = ∅. Since both X([0, t]) and F are closed
subsets of Rd, they must be separated apart by a positive distance. Conversely,
if X([0, t]) has a positive distance to F , by the continuity of sample paths the
process will remain outside F at least within a sufficiently small amount of time
after t. As a result, the hitting time of F must be strictly larger than t. Therefore,
the relation (1.9) holds. The next observation is that

{d(X[0, t], F ) > 0} =
∞⋃
n=1

⋂
r∈[0,t]∩Q

{
d(Xr, F ) >

1

n

}
, (1.10)

which is again a simple consequence of the continuity of sample paths. Since X
is {Ft}-adapted, we know that Xr ∈ Fr. In particular,{

d(Xr, F ) >
1

n

}
∈ Fr ⊆ Ft

for any r 6 t. Therefore, the right hand side of (1.10) and thus {τ > t} is Ft-
measurable.

Remark 1.3. The conclusion of Proposition 1.4 is in general not true if F is not
assumed to be a closed subset (why?). Under what assumption can it be true for
open subsets?

Remark 1.4. In more advanced texts, for technical reasons one often assumes
that the underlying filtered probability space (Ω,F ,P; {Ft}) satisfies the usual
conditions, namely {Ft} is right continuous (Ft = ∩s>tFs for all t) and F0 contains
all P-null sets. These assumptions avoid many unpleasant technical issues related
to hitting times, modification on null sets, space completeness etc. and it can
be shown that they are not so restrictive at all. At the current level, we do not
bother with these technical points and these assumptions will not be emphasised.
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1.3 The conditional expectation

The idea of conditioning is essential in probability theory, as the a priori knowl-
edge of partial information often changes the original distribution of the under-
lying random variable. Since different σ-algebras represent different amounts of
information, it is natural to consider conditional probabilities/distributions given
a σ-algebra. This leads us to the general notion of conditional expectation.

Let (Ω,F ,P) be a given probability space. Let X be an integrable random
variable on Ω (i.e. an F -measurable function with finite expectation), and let
G ⊆ F be a sub-σ-algebra of F . Heuristically, G contains a subset of information
from F . We want to define the conditional expectation of X given G (denoted as
E[X|G]).

Let us first make two extreme observations. If G = {∅,Ω} (the trivial σ-
algebra), the information contained in G is trivial. In this case, the most effec-
tive prediction of X given the information in G is merely its mean value, i.e.
E[X|{∅,Ω}] = E[X]. Next, suppose that G = F (the full information). Since X
is F -measurable, the information in F allows us to determine the value of X at
each random experiment. As a result, the prediction of X given F should be the
random variable X itself, i.e. E[X|F ] = X. For those intermediate situations
where G is a non-trivial proper sub-σ-algebra of F , it is reasonable to expect that
E[X|G] should be defined as a suitable random variable.

To motivate its definition, we first recapture an elementary situation. Suppose
that A is a given event. The conditional probability of an arbitrary event B given
A is defined as

P(B|A) =
P(B ∩ A)

P(A)
.

When viewed as a set function, P(·|A) is the conditional probability measure given
A. The integral of X with respect to this conditional probability measure gives
the average value of X given the occurrence of A:

E[X|A] =

∫
Ω

XdP(·|A) =
E[X1A]

P(A)
. (1.11)

Now suppose that the given sub-σ-algebra G is generated by a partition of Ω, say

G = σ(A1, A2, · · · , An)

where Ai ∩ Aj = ∅ and Ω = ∪ni=1Ai. To define the random variable E[X|G], the
main idea is that on each event Ai the value of E[X|G] should simply be the
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average value of X given that Ai occurs. Mathematically, one has

E[X|G](ω) =
n∑
i=1

ci1Ai(ω),

where
ci , E[X|Ai] =

E[X1Ai ]

P(Ai)
, i = 1, 2, · · · , n.

A key observation from this definition is that the integral of E[X|G] on each event
Ai coincides with the integral of X on the same event:∫

Ai

E[X|G]dP =

∫
Ai

n∑
j=1

cj1Aj(ω)dP = ciP(Ai) = E[X1Ai ] =

∫
Ai

XdP.

This observation motivates the following general definition of the conditional ex-
pectation.

Definition 1.7. Let (Ω,F ,P) be a given probability space. Let X be an inte-
grable random variable on Ω and let G ⊆ F be a sub-σ-algebra. The conditional
expectation of X given G is an integrable, G-measurable random variable Y such
that ∫

A

Y dP =

∫
A

XdP ∀A ∈ G. (1.12)

This random variable is denoted as E[X|G].

The existence and uniqueness of E[X|G] is guaranteed by the so-called Radon-
Nikodym theorem which we will not elaborate here. It is though useful to keep in
mind that the uniqueness of E[X|G] is understood in the following sense: if Y1, Y2

are two random variables satisfying the properties in Definition 1.7, then Y1 = Y2

almost surely (a.s.), i.e. P(Y1 = Y2) = 1.
Although we do not discuss the general construction of E[X|G], the follow-

ing geometric intuition is enlightening. Let H , L2(Ω,F ,P) denote the space
of square integrable (i.e. having finite second moment), F -measurable random
variables. One can define natural notions of inner product, length and distance
for elements in H:

〈X, Y 〉 , E[XY ], ‖X‖ ,
√
〈X,X〉 =

√
E[X2], d(X, Y ) , ‖X − Y ‖.

Although this sounds abstract, the equipment of such a structure makes the space
H analogous to the usual Euclidean space where elements are viewed as vectors
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and lengths/angles can be measured. In particular, one can naturally talk about
the orthogonal projection of a vector onto a given (closed) subspace. Now let
H0 , L2(Ω,G,P) denote the collection of random variables in H that are G-
measurable. Then H0 is a closed subspace of H. It turns out that E[X|G] is the
orthogonal projection of X onto the subspace H0, i.e. the unique vector in H0

that has minimal distance to X. Can you prove this fact?

By taking A = Ω in (1.12), it is clear that E[X] = E[E[X|G]]. This is often
known as the law of total expectation. We list several basic properties of the
conditional expectation that are useful later on.

Theorem 1.1. The conditional expectation satisfies the following properties. We
always assume all the underlying random variables are integrable.

(i) The map X 7→ E[X|G] is linear.
(ii) If X 6 Y, then E[X|G] 6 E[Y |G]. In particular,

|E[X|G]| 6 E[|X||G].

(iii) If Z is G-measurable, then

E[ZX|G] = ZE[X|G].

(iv) [The tower rule] If G1 ⊆ G2 are sub-σ-algebras of F , then

E[E[X|G2]|G1] = E[X|G1].

(v) If X and G are independent, then

E[X|G] = E[X].

(vi) [Jensen’s inequality] Let ϕ be a convex function on R, i.e.

ϕ(λx+ (1− λ)y) 6 λϕ(x) + (1− λ)ϕ(y)
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for any x, y ∈ R and λ ∈ [0, 1]. Then

ϕ(E[X|G]) 6 E[ϕ(X)|G]. (1.13)

The proof of these properties are standard from the definition and we refer
the reader to [21, Chapter 9] for the details. The intuition beind some of these
properties are clear. For instance, for Property (iii), given the information in G
the value of Z is known. In other words, conditional on G the random variable
is frozen (treated as a constant) and can thus be moved outside the conditional
expectation. In Property (v), by independence the knowledge of G provides no
meaningful information for the prediction of X. Therefore, the most effective
prediction of X is its unconditional mean.

1.4 Martingales

A basic notion that describes the dynamics of a system under the effect of informa-
tion growth is the concept of martingales. As we will see, the core techniques for
studying stochastic integration and differential equations are based on martingale
methods.

Heuristically, a martingale models the wealth process of a fair game. Mathe-
matically, the fairness property can be described in terms of conditional expecta-
tion: given the information up to the present time, the conditional expectation of
the future wealth is equal to the current wealth.

Let (Ω,F ,P; {Ft : t ∈ T}) be a given filtered probability space, where T is a
given subset of R representing the index of time.

Definition 1.8. A real-valued stochastic process X = {Xt : t ∈ T} is called an
{Ft}-martingale (respectively, a submartingale/supermartingale) if the following
properties hold true:

(i) X is {Ft}-adapted;
(ii) Xt is integrable for every t ∈ T ;
(iii) for every s < t ∈ T,

E[Xt|Fs] = Xs, (respectively ">"/"6"). (1.14)

Remark 1.5. This definition relies crucially on the underlying filtration. As a
shorthanded notation, we sometimes say that {Xt,Ft : t ∈ T} is a (sub/super)martingale.
Note that a martingale with respect to one filtration may fail to be a martingale
with respect to another.
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Remark 1.6. In the discrete time context, the martingale property (1.14) is equiv-
alent to E[Xn+1|Fn] = Xn for all n (why?).

Example 1.2. Let {ξn : n = 1, 2, · · · } denote an i.i.d. sequence of random
variables with distribution

P(ξ1 = 1) = P(ξ1 = −1) =
1

2
.

We consider the natural filtration associated with the process ξ:

Fn , σ(ξ1, · · · , ξn), n > 1

with F0 , {∅,Ω}. Define Sn , ξ1 + · · · + ξn (S0 , 0). Then {Sn,Fn : n =
0, 1, 2, · · · }. It is clear that Sn is integrable and Fn-measurable. To obtain the
martingale property (1.14), for any m > n we have

E[Sm|Fn] = E[Sn + ξn+1 + · · ·+ ξm|Fn]

= E[Sn|Fn] + E[ξn+1 + · · ·+ ξm|Fn]

= Sn + E[ξn+1 + · · ·+ ξm]

= Sn.

A simple way of constructing a submartingale from a given martingale is to
compose with convex functions. Recall that a function ϕ : R→ R is convex if

ϕ(λx+ (1− λ)y) 6 λϕ(x) + (1− λ)ϕ(y) ∀λ ∈ [0, 1], x, y ∈ R.

Proposition 1.5. Let {Xt,Ft : t ∈ T} be a martingale (respectively, a submartin-
gale). Suppose that ϕ : R→ R is a convex function (respectively, a convex and in-
creasing function). If ϕ(Xt) is integrable for every t ∈ T, then {ϕ(Xt),Ft : t ∈ T}
is a submartingale.

Proof. The adaptedness and integrability conditions are clearly satisfied. To see
the submartingale property, we apply Jensen’s inequality (1.13) to find that

E[ϕ(Xt)|Fs] > ϕ(E[Xt|Fs]) > ϕ(Xs)

for any s < t ∈ T.

Example 1.3. The functions

ϕ1(x) = x+ , max{x, 0}, ϕ2(x) = |x|p (p > 1)

are convex on R. As a result, if {Xt,Ft} is a martingale, then {X+
t } and {|Xt|p}

(p > 1) are both {Ft}-submartingales, provided that E[|Xt|p] <∞ for every t.
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To develop the essential idea of martingales, in what follows we focus on the
discussion of the discrete-time case. Some of the parallel results in the continuous-
time case require only technical adaptations on which we will comment briefly in
the sequel.

1.4.1 The martingale transform: discrete stochastic integration

We begin with a very useful construction of a class of martingales. This also
provides the discrete version of stochastic integrals.

Let T = {0, 1, 2, · · · } be the index set. We first introduce a few definitions.

Definition 1.9. Let {Fn : n > 0} be a filtration. A real-valued random sequence
{Cn : n > 1} is said to be {Fn}-predictable if Cn is Fn−1-measurable for every
n > 1.

Heuristically, predictability means that the future value Cn+1 can be deter-
mined by the history up to the present time n.

Let {Xn : n > 0} and {Cn : n > 1} be two random sequences. We define
another sequence {Yn : n > 0} by Y0 , 0 and

Yn ,
n∑
k=1

Ck(Xk −Xk−1), n > 1.

Definition 1.10. The sequence {Yn : n > 0} is called the martingale transform
of {Xn} by {Cn}. We often write Yn as (C •X)n.

The martingale transform is a discrete-time version of stochastic integration
as seen from the continuous/discrete comparison:∫

CtdXt ≈
∑
k

Ck(Xtk −Xtk−1
).

The following important result justifies its name.

Theorem 1.2. Let {Xn,Fn : n > 0} be a martingale (respectively, submartin-
gale/supermartingale) and let {Cn : n > 1} be an {Fn}-predictable random se-
quence which is uniformly bounded (respectively, bounded and non-negative). Then
the martingale transform {(C •X)n,Fn : n > 0} is a martingale (respectively, sub-
martingale, supermartingale).
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Proof. We only consider the martingale case. Adaptedness and integrability are
clear. To check the martingale property, we have

E[(C •X)n+1|Fn] = E[(C •X)n + Cn+1(Xn+1 −Xn)|Fn]

= (C •X)n + Cn+1 ·
(
E[Xn+1|Fn]−Xn

)
= (C •X)n,

where we have used the predictability of {Cn} to reach the second last identity.

Remark 1.7. The boundedness of {Cn} is not an essential assumption. It is im-
posed to guarantee the integrability of Yn.

The following intuition of the martingale transform is particularly useful. Sup-
pose that you are gambling over the time horizon {1, 2, · · · }.The quantity Cn rep-
resents your stake at game n. Predictability means that you are making your next
decision on the stake amount Cn+1 based on the information Fn observed up to
the present round n. The quantity Xn − Xn−1 represents your winning at game
n per unit stake. As a result, Yn is your total winning up to time n. Theorem
1.2 asserts that if the game is fair (i.e. {Xn,Fn} is a martingale) and if you are
playing the game based on the intrinsic information carried by the game itself
(predictability), then you cannot beat fairness (your wealth process {Yn,Fn} is
also a martingale).

As we will see below, Theorem 1.2 can be used as a unified approach to estab-
lish several fundamental results in martingale theory. These results were all due
to J.L. Doob in the 1950s.

1.4.2 The martingale convergence theorem

The (sub/super)martingale property (1.14) exhibits certain kind of monotone be-
haviour. It is therefore reasonable to expect that a (sub/super)martingale con-
verges in a suitable sense if its mean sequence does not explode in the long run.

Recall that a random sequence {Xn : n > 0} is said to be convergent almost
surely (a.s.) if it is convergent for every ω outside some event of zero probability.
Equivalently, the event consisting of those ω’s at which {Xn(ω)} is not convergent
has zero probability.

Before establishing the martingale convergence theorem, we first explain a
general strategy of proving the almost sure convergence of a random sequence.
Let X = {Xn : n > 0} be a given random sequence. Then {Xn(ω)} is convergent
if and only if

lim
n→∞

Xn(ω) = lim
n→∞

Xn(ω).
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Therefore,

{Xn is not convergent} ⊆
{

lim
n→∞

Xn < lim
n→∞

Xn

}
⊆
⋃
a<b
a,b∈Q

{
lim
n→∞

Xn < a < b < lim
n→∞

Xn

}
.

In order to prove that Xn converges almost surely, it suffices to show that

P
(

lim
n→∞

Xn < a < b < lim
n→∞

Xn

)
= 0 (1.15)

for every pair of given numbers a < b. Here comes the key observation: due to
the definition of the liminf/limsup, the event in (1.15) implies that there is a
subsequence of Xn lying below a while there is another subsequence of Xn lying
above b. This further implies that, as n increases there must be infinitely many
upcrossings by the sequence Xn from below the level a to above the level b.

From the above reasoning, the key step for proving the a.s. convergence of
{Xn} is to control its total upcrossing number with respect to the interval [a, b],
more specifically, to show that with probability one there are at most finitely
many upcrossings with respect to [a, b].

We now define the upcrossing number mathematically. Consider the following
two sequences of random times: σ0 , 0,

σ1 , inf{n > 0 : Xn < a}, τ1 , inf{n > σ1 : Xn > b},
σ2 , inf{n > τ1 : Xn < a}, τ2 , inf{n > σ2 : Xn > b},

· · ·
σk , inf{n > τk−1 : Xn < a}, τk , inf{n > σk : Xn > b},

· · · .
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Definition 1.11. Given N > 0, the upcrossing number UN(X; [a, b]) with respect
to the interval [a, b] by the sequence {Xn} up to time N is define by the random
number

UN(X; [a, b]) ,
∞∑
k=1

1{τk6N}.

Note that UN(X; [a, b]) 6 N/2. Moreover, if {Fn : n > 0} is a filtration and X
is {Fn}-adapted, then σk, τk are {Fn}-stopping times. In particular, UN(X; [a, b])
is FN -measurable. The main result of controlling the quantity UN(X; [a, b]) is
stated as follows.

Proposition 1.6 (The Upcrossing Inequality). Let {Xn,Fn : n > 0} be a su-
permartingale. Then the upcrossing number UN(X; [a, b]) satisfies the following
inequality:

E[UN(X; [a, b])] 6
E[(XN − a)−]

b− a
, (1.16)

where x− , max{−x, 0}.

Proof. The main idea is to construct a suitable martingale transform of {Xn}
(a suitable gambling strategy). Consider the gambling model where Xn − Xn−1

represents the winning at game n per unit stake. Let us construct a gambling
strategy as follows: repeat the following two steps forever:

(i) wait until Xn gets below a;
(ii) play unit stakes onwards until Xn gets above b and then stop playing.

Mathematically, the strategy {Cn : n > 1} is defined by the following equations:

C1 , 1{X0<a}
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and
Cn , 1{Cn−1=0}1{Xn−1<a} + 1{Cn−1=1}1{Xn−16b}, n > 2.

Let {Yn} be the martingale transform of Xn by Cn. Then YN represents the
total winning up to time N. Note that YN comes from two parts: the playing
intervals corresponding to complete upcrossings, and the last playing interval
corresponding to the last incomplete upcrossing (which might not exist).

The total winning YN from the first part is clearly bounded from below by
(b − a)UN(X; [a, b]). The total winning in the last playing interval (if it exists)
is bounded from below by −(XN − a)− (the worst scenario when a loss occurs).
Consequently, we find that

YN > (b− a)UN(X; [a, b])− (XN − a)−.

On the other hand, from the construction it is clear that {Cn} is a bounded,
non-negative and {Fn}-predictable. According to Theorem 1.2, {Yn,Fn} is a
supermartingale. Therefore,

E[YN ] 6 E[Y0] = 0,

which then gives (1.16).

Remark 1.8. There is also a version of the upcrossing inequality for the submartin-
gale case. However, the proof of that case is quite different from what we give
here. Since they both lead to the same convergence theorem, we only consider
the supermartingale case.

Since UN(X; [a, b]) is increasing in N, one can define the total upcrossing num-
ber for all time as

U∞(X; [a, b]) , lim
N→∞

UN(X; [a, b]).
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From the upcrossing inequality, if we assume that the supermartingale {Xn,Fn}
is bounded in L1, namely

sup
n>0

E[|Xn|] <∞, (1.17)

then

E[U∞(X; [a, b])] = lim
N→∞

E[UN(X; [a, b])] 6
supn>0 E[|Xn|] + |a|

b− a
<∞.

In particular, U∞(X; [a, b]) <∞ almost surely. It then follows from the relation{
lim
n→∞

Xn < a < b < lim
n→∞

Xn

}
⊆ {U∞(X; [a, b]) =∞}

that (1.15) holds. As a result, we conclude that Xn is convergent almost surely.
Let us denote the limiting random variable as X∞. From Fatou’s lemma, under
the L1-boundedness assumption (1.17) we also know that

E[|X∞|] = E
[

lim
n→∞

|Xn|
]
6 lim

n→∞
E[|Xn|] 6 sup

n>0
E[|Xn|] <∞.

To summarise, we have established the following convergence result.

Theorem 1.3 (The Supermartingale Convergence Theorem). Let {Xn,Fn : n >
0} be a supermartingale which is bounded in L1. Then Xn converges almost surely
to an integrable random variable X∞.

Remark 1.9. Since martingales are supermartingales and a submartingale is the
negative of a supermartingale, it is immediate that the above convergence theorem
is also valid for (sub)martingales.

1.4.3 The optional sampling theorem

It is reasonable to expect that the martingale property (1.14) remains valid even
when we sample along stopping times. This is the content of the optional sampling
theorem.

To elaborate this fact, let {Xn,Fn : n > 0} be a (sub/super)martingale and
let τ be an {Fn}-stopping time. We introduce the stopped process

Xτ
n , Xτ∧n =

{
Xn, n 6 τ,

Xτ , n > τ.

Theorem 1.4. The stopped process Xτ
n is an {Fn}-(sub/super)martingale.
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Proof. As in the proof of the upcrossing inequality, we represent Xτ
n through a

gambling model. The gambling strategy is constructed as follows: keep playing
unit stake from the beginning and quit immediately after the time τ. Mathemat-
ically, the strategy is defined by

Cn , 1{n6τ}, n > 1.

Then the total winning up to time n is give n by (C • X)n = Xτ∧n − X0. The
result follows immediate from Theorem 1.2.

Next, we consider the situation when we also stop our filtration at a stopping
time. For simplicity, we only consider the situation where the underlying stopping
times are both uniformly bounded.

Theorem 1.5 (The Optional Sampling Theorem). Let {Xn,Fn : n > 0} be a
martingale. Suppose that σ, τ are two bounded {Fn}-stopping times such that
σ 6 τ . Then Xσ (respectively, Xτ) is integrable, Fσ-measurable (respectively,
Fτ -measurable) and

E[Xτ |Fσ] = Xσ. (1.18)

Proof. Assume that σ 6 τ 6 N for some constant N > 0. The integrability and
Fσ-measurability of Xσ is left as an exercise. To obtain the martingale property,
by the definition of conditional expectation one needs to show that∫

F

XτdP =

∫
F

XσdP ∀F ∈ Fσ. (1.19)

Let F ∈ Fσ be given fixed. Consider the gambling strategy of playing unit stake
at each time step from σ + 1 until τ under the occurrence of F :

Cn , 1F1{σ<n6τ}, n > 1.

The total winning by time N is (C • X)N = (Xτ − Xσ)1F . On the other hand,
{Cn} is {Fn}-predictable since

F ∩ {σ < n 6 τ} = F ∩ {σ 6 n− 1} ∩ (τ 6 n− 1)c ∈ Fn−1.

According to Theorem 1.2, {(C •X)n,Fn} is a martingale. In particular,

E[(C •X)N ] = E[(Xτ −Xσ)1F ] = E[(C •X)0] = 0.

This gives the desired property (1.19).

Remark 1.10. The above proof clearly applies to the sub/super martingale situ-
ation as well. Under suitable conditions, the result can be extended to the case
of unbounded stopping times. We will not discuss this general situation (cf. [21,
Sec. 10.10] and [5, Sec. 9.3]).
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1.4.4 The maximal and Lp-inequalities

By using the optional sampling theorem for bounded stopping times, we derive
two basic martingale inequalities that are important for the study of stochastic
integrals and differential equations. In this part, we work with submartingales.

The core result is known as the maximal inequality. As a submartingale ex-
hibits an increasing trend, it is not surprising that its running maximum can be
controlled by the terminal value in some sense.

Theorem 1.6. Let {Xn,Fn : n > 0} be a submartingale. For every N > 0 and
λ > 0, the following inequality holds true:

P
(

max
06n6N

Xn > λ
)
6

E[X+
N ]

λ
.

Proof. Let σ , inf{n 6 N : Xn > λ} denote the first time (up to N) that Xn

exceeds the level λ. We set σ = N if no such n 6 N exists. Clearly σ is an
{Fn}-stopping time bounded by N . By taking expectation on both sides of (1.18)
(in the submartingale case), we have

E[XN ] > E[Xσ]. (1.20)

On the other hand, we can write

Xσ = Xσ1{X∗N>λ} +Xσ1{X∗N<λ}

where
X∗N , max

06n6N
Xn.

On the event {X∗N > λ}, the process Xn does exceed λ at some n 6 N and thus
Xσ > λ. On the event {X∗N < λ} no such exceeding occurs and thus Xσ = XN

(σ = N in this case). As a result, we have

E[XN ] > E[Xσ] = E
[
Xσ1{X∗N>λ}

]
+ E

[
Xσ1{X∗N<λ}

]
> λP

(
X∗N > λ

)
+ E

[
XN1{X∗N<λ}

]
.

It follows that

λP
(
X∗N > λ

)
6 E[XN ]− E[XN1{X∗N<λ}] = E[XN1{X∗N>λ}] 6 E[X+

N ], (1.21)

which yields the desired inequality.
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An important corollary of the maximal inequality is the Lp-inequality for the
running maximum. Before establishing the result, we first need the following
lemma. Given a random variable X, we use ‖X‖p , E[|X|p]1/p to denote its
Lp-norm (p > 1). We say that X ∈ Lp if ‖X‖p <∞.

Lemma 1.1. Suppose that X, Y are two non-negative random variables such that

P(X > λ) 6
E[Y 1{X>λ}]

λ
∀λ > 0. (1.22)

Then for any p > 1, we have

‖X‖p 6 q‖Y ‖p, (1.23)

where q , p/(p− 1) (so that 1/p+ 1/q = 1).

Proof. Suppose ‖Y ‖p <∞ for otherwise the result is trivial. We write

E[Xp] = E
[ ∫ X

0

pλp−1dλ
]

= E
[∫ ∞

0

pλp−11{X>λ}dλ

]
.

By switching the order of the two integrals, we have

E[Xp] =

∫ ∞
0

pλp−1P(X > λ)dλ

6
∫ ∞

0

pλp−2E
[
Y 1{X>λ}

]
dλ

= E
[
Y

∫ X

0

pλp−2dλ
]

=
p

p− 1
E[Y Xp−1]. (1.24)

To proceed further, we assume for the moment that X ∈ Lp. According to
Hölder’s inequality (cf. Appendix (7)), we have

E[Y Xp−1] 6 ‖Y ‖p‖Xp−1‖q = ‖Y ‖p‖X‖p−1
p .

The inequality (1.23) thus follows by diving ‖X‖p−1
p to the left hand side of (1.24).

If ‖X‖p =∞, we let XN , X ∧N (N > 1). By considering the cases λ > N and
λ 6 N separately, it is not hard to see that the condition (1.22) holds for the pair
(XN , Y ). The desired inequality (1.23) follows by first considering XN and then
applying the monotone convergence theorem.
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The Lp-inequality for (sub)martingales is stated as follows.

Corollary 1.1. Let {Xn,Fn : n > 0} be a non-negative submartingale. Let p > 1
and suppose that Xn ∈ Lp for all n. Then for every N > 0, we have

‖X∗N‖p 6 q‖XN‖p

where X∗N , max
06n6N

Xn and q , p/(p− 1). In particular, X∗N ∈ Lp.

Proof. We have shown in (1.21) that

P(X∗N > λ) 6
E[XN1{X∗N>λ}]

λ
.

In particular, the condition (1.22) holds with (X, Y ) = (X∗N , XN). The result
follows immediate from Lemma 1.1.

1.4.5 The continuous-time case

All the aforementioned results for discrete-time (sub/super)martingales hold in
the continuous-time case, provided that suitable regularity conditions on the sam-
ple paths are imposed. In the current study, we assume that X = {Xt,Ft : t > 0}
is a (sub/super)martingale such that every sample path of X is continuous. This
assumption is almost sufficient for the purpose of diffusion theory and significantly
simplifies several technical considerations (such as measurability properties). In
what follows, we only point out the essential idea of extending the previous results
to the continuous-time context. For the technical details, we refer the reader to
[17, Sec. II.5].

The martingale convergence theorem. This can be established by using
exactly the same idea based on upcrossing numbers. The only place which needs
care is the definition of upcrossing numbers. Let a < b be two real numbers.
Given a finite subset F ⊆ [0,∞), we define UF (X; [a, b]) to be the upcrossing
number with respect to [a, b] by the process {Xt : t ∈ F}, defined in the same
way as in the discrete-time case. For a given time interval I ⊆ [0,∞), we set

UI(X; [a, b]) , sup{UF (X; [a, b]) : F ⊆ I, F is finite}.

This random variable UI(X; [a, b]) records the upcrossing number for the process
X over the time interval I. Since X has continuous sample paths, one can approx-
imate UI(x; [a, b]) by the upcrossing number over rational times in I. Now the
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crucial observation is that for each fixed n, the discrete-time upcrossing inequal-
ity is uniform with respect to all finite subsets F ⊆ [0, N ]. This allows us to take
limit (by further approximating [0, N ] ∩ Q by finite subsets) to obtain the same
upcrossing inequality for the random variable U[0,N ](X; [a, b]).

The optional sampling theorem. The extension of this result to the continuous-
time case is trickier. The main idea is to discretise the process as well as the given
stopping times. More precisely, suppose that σ, τ < N with some deterministic
number N . For each n > 1, we define

σn ,
n∑
k=1

kN

n
1{ k−1

n
N6σ< kN

n }

and similarly for τn. Then σn 6 τn are bounded {FkN/n : k = 0, 1, 2, · · · , n}-
stopping times taking values on the discrete-time grid {kN/n}nk=0. As a result, we
can apply the discrete-time optional sampling theorem to get (say in the martin-
gale case)

E[Xτn|Fσn ] = Xσn .

The next key observation is that σn ↓ σ and τn ↓ τ as n → ∞. This allows us to
take limit to obtain the desired property

E[Xτ |Fσ] = Xσ.

We should however point out that the above limiting procedure is a non-trivial
matter and relies on a tool known as the backward martingale convergence theorem.

The maximal and Lp-inequalities. The extension of this part is similar to the
case of the upcrossing inequality. Firstly, the continuity of sample paths implies
that

sup
t∈[0,N ]

Xt = sup
t∈[0,N ]∩Q

Xt.

In addition, the discrete-time maximal and Lp-inequalities are both uniform with
respect to the restriction of the process X to any finite subset F ⊆ [0, N ]. The
continuous-time inequalities follow by approximating the index set [0, N ] ∩Q by
finite subsets.

Convention. Throughout the rest of the notes, a continuous (sub/super)martingale
means a (sub/super)martingale indexed by continuous-time and has continuous
sample paths.
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2 Brownian motion
Based on principles of statistical physics, in 1905 A. Einstein discovered the mech-
anism governing the random movement of particles suspended in a fluid, a phe-
nomenon first observed by the botanist R. Brown in 1827. Such a random motion
is commonly known as the Brownian motion. In 1900, L. Bachelier first used the
distribution of Brownian motion to model the Paris stock market and evaluate
stock options. The precise mathematical construction of Brownian motion was
due to N. Wiener in 1923.

Brownian motion is among the most important objects of study, as it lies
at the intersection of almost all fundamental kinds of stochastic processes: it is
a Gaussian process, a martingale, a Markov process, a diffusion process and a
Lévy process. In addition, it creates a bridge connecting probabilistic methods
with other branches of mathematics such as partial differential equations, har-
monic analysis, differential geometry, group theory as well as applied areas such
as physics and finance.

Before developing the theory of stochastic calculus which is essentially the
differential calculus for Brownian motion, we must first spend some time investi-
gating properties of the Brownian motion.

2.1 The construction of Brownian motion

In Section 1.1.1, we have motivated the Brownian motion as a suitable scaling
limit of simple random walks and postulated its distributional properties. From
the discussion over there, it is also reasonable to expect that the Brownian motion
has continuous sample paths. The precise definition of Brownian motion is given
as follows.

Definition 2.1. A stochastic process B = {Bt : t > 0} defined on some prob-
ability space (Ω,F ,P) is said to be a (one-dimensional) Brownian motion if the
following properties hold:

(i) P(B0 = 0) = 1;
(ii) Bt −Bs ∼ N(0, t− s) for any s < t;
(iii) for any n > 1 and t1 < t2 < · · · < tn, the increments

Bt1 , Bt2 −Bt1 , · · · , Btn −Btn−1

are independent;
(iv) almost every sample path of B is continuous, namely there exists a P-null set
N such that the function t 7→ Bt(ω) is continuous for every ω /∈ N.
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Remark 2.1. There is no harm to assume that B0(ω) = 0 and t 7→ Bt(ω) is
continuous for every ω ∈ Ω.

More generally, one can allow the Brownian motion to start from an arbitrarily
given position x by requiring that P(B0 = x) = 1. We call this a Brownian
motion starting at x. One can also define multidimensional Brownian motions:
a Brownian motion in Rd is a stochastic process B = {(B1

t , · · · , Bd
t ) : t > 0}

such that the components B1, · · · , Bd are independent one-dimensional Brownian
motions.

The Brownian motion has the following invariance properties. The proof is
almost immediate from the definition and is left as an exercise.

Proposition 2.1. Let B = {Bt : t > 0} be a Brownian motion.

(i) Translation invariance: for every s > 0,the process {Bt+s − Bs : t > 0} is a
Brownian motion.
(ii) Reflection invariance: the process −B is a Brownian motion.
(iii) Scaling invariance: for each λ > 0, the process {λ−1Bλ2t : t > 0} is a
Brownian motion.

Before investigating deeper properties of Brownian motion, we first address
the question of its existence. To this end, we follow the original idea of N. Wiener
to construct the Brownian motion from the perspective of (random) Fourier series.

Theorem 2.1. There exists a probability space on which a Brownian motion is
defined.

The rest of this section is devoted to the proof of Theorem 2.1. We only
construct the Brownian motion on [0, π] and let the reader think about how a
Brownian motion on [0,∞) can be produced based on this construction.

2.1.1 Some notions on Fourier series

The classical Fourier series gives a formal expansion of a function f : [−π, π]→ R
in terms of the elementary trigonometric functions:

f(t) ' a0

2
+
∞∑
n=1

(an cosnt+ bn sinnt), t ∈ [−π, π], (2.1)

where the Fourier coefficients an, bn are given by

a0 =
1

π

∫ π

−π
f(t)dt, an =

1

π

∫ π

−π
f(t) cosntdt, bn =

1

π

∫ π

−π
f(t) sinntdt.
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The method of obtaining these expressions for the coefficients is easy: one sim-
ply observes that the trigonometric functions cosnt (n > 0), sinnt (n > 1) are
orthogonal to each other:∫ π

−π
cosmt · cosntdt =

∫ π

−π
sinmt · sinntdt = 0 ∀m 6= n

and ∫ π

−π
cosmtdt =

∫ π

−π
sinntdt =

∫ π

−π
cosmt · sinntdt = 0 ∀m,n.

For instance, to compute bn we multiply the equation (2.1) by sinnt and integrate
over [−π, π]. The above orthogonality properties shows that∫ π

−π
f(t) sinntdt = bn ·

∫ π

−π
sin2 ntdt = πbn.

Note that if f(t) is an even function on [−π, π], one has bn = 0 for all n and the
expansion becomes

f(t) ' a0

2
+
∞∑
n=1

an cosnt, t ∈ [0, π] (2.2)

with
a0 =

2

π

∫ π

0

f(t)dt, an =
2

π

∫ π

0

f(t) cosntdt. (2.3)

2.1.2 Wiener’s original idea

The key insight behind Wiener’s construction of the Brownian motion {Bt : t ∈
[0, π]} is to represent its “derivative” Ḃt in terms of a (random) Fourier series.
Before proceeding, we first make a note that the argument below is entirely formal
(the derivative of Brownian motion makes no sense) and is intended for motivating
the essential idea. The precise mathematical construction is given in the next part.

We begin by noting that the distribution of Bt+δt−Bt is independent of t. As
a result, the “derivative” Ḃt behaves like a “constant function” and can thus be
treated as an “even function”. According to (2.2), one expects that

Ḃt '
a0

2
+
∞∑
n=1

an cosnt, t ∈ [0, π].
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Since Bt is a random, the Fourier coefficients a0, an are themselves random vari-
ables. In view of (2.3), they are given by

a0 =
2

π

∫ π

0

Ḃtdt, an =
2

π

∫ π

0

(cosnt) · Ḃtdt. (2.4)

To figure out the distribution of these coefficients, let us make the following key
observation. Due to the special Gaussian nature of the Brownian motion, given
any pair of square-integrable functions f, g : [0, π]→ R, the random variables

Xf ,
∫ π

0

f(t)Ḃtdt, Xg ,
∫ π

0

g(t)Ḃtdt

should be jointly Gaussian with mean zero. We claim that their covariance should
be given by the L2-inner product of f and g :

E[XfXg] =

∫ π

0

f(t)g(t)dt.

Indeed, let us simply assume that f, g are step functions:

f(t) =
n∑
i=1

ci1(ui−1,ui], g(t) =
n∑
i=1

di1(ui−1,ui],

where 0 = u0 < u1 < · · · < un−1 < un = π is a finite partition of [0, π] and
ci, di ∈ R. In this case, we have

Xf =
n∑
i=1

ci

∫ π

0

1(ui−1,ui](t)Ḃtdt =
n∑
i=1

ci

∫ ui

ui−1

Ḃtdt =
n∑
i=1

ci(Bui −Bui−1
)

and a similar expression holds for Xg. It follows from the definition of Brownian
motion (Properties (ii) and (iii)) that

E[XfXg] = E
[( n∑

i=1

ci(Bui −Bui−1
)
)
·
( n∑
j=1

dj(Buj −Buj−1
)
)]

=
n∑
i=1

cidiE[(Bui −Bui−1
)2] =

n∑
i=1

cidi(ui − ui−1)

=

∫ π

0

f(t)g(t)dt.
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As a consequence, we see that (by taking f = g)

Xf ∼ N
(
0,

∫ π

0

f 2(t)dt
)

(2.5)

and
Xf , Xg are independent if

∫ π

0

f(t)g(t)dt = 0. (2.6)

By applying (2.5) and (2.6) to (2.4) for f = 1 and cosnt, one finds that

a0

2
∼ N

(
0,

1

π

)
, an ∼ N

(
0,

2

π

)
and these coefficients are all independent. To put it in an equivalent way, we can
formally represent

Ḃt '
1√
π
ξ0 +

∞∑
n=1

√
2

π
ξn cosnt (2.7)

where {ξn : n > 1} is an i.i.d. sequence of standard normal random variables. By
integrating (2.7) from [0, t], we obtain the following representation:

Bt '
t√
π
ξ0 +

√
2

π

∞∑
n=1

ξn sinnt

n
, t ∈ [0, π]. (2.8)

This representation motivates the precise construction of the Brownian motion
which we elaborate in what follows.

2.1.3 The mathematical construction

Let (Ω,F ,P) be a given probability space on which an i.i.d. sequence {ξn : n =
0, 1, 2, · · · } of standard normal random variables are defined. The existence of
such a probability space is a standard construction from measure theory which
will not be discussed here (cf. Appendix (11)).

For each n > 1, we set

S
(n)
t ,

t√
π
ξ0 +

√
2

π

n∑
k=1

ξk sin kt

k
, t ∈ [0, π].

Note that the stochastic process S(n)(t) is the partial sum (up to n) in the rep-
resentation (2.8) and it has continuous sample paths since the function sin kt is
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continuous. To construct the Brownian motion rigorously (with continuous sam-
ple paths), one needs to show that with probability one, S(n) converges uniformly
on [0, π]. With no surprise the limiting continuous (random) function will then
be a Brownian motion defined on (Ω,F ,P).

However, directly proving the almost sure uniform convergence of S(n) is a
rather challenging task. In what follows, we take a shortcut by proving the a.s.
uniform convergence of S(n) along a subsequence. This will be enough to produce
a Brownian motion in the limit.

Lemma 2.1. With probability one, the sequence {S(2m) : m > 1} is uniformly
convergent on [0, π].

Proof. The following elegant complexification argument was due to K. Itô and H.
McKean [8, Sec. 1.5]. For each m < n, we set

S
(m,n)
t ,

n∑
k=m+1

ξk sin kt

k
, Cm,n , ‖S(m,n)‖∞ , sup

06t6π
|S(m,n)
t |.

Note that

S
(n)
t − S

(m)
t =

√
2

π
S

(m,n)
t .

By viewing sin kt as the imaginary part of the complex number eikt, we have

|S(m,n)
t |2 =

∣∣Re
( n∑
k=m+1

ξke
ikt

k

)∣∣2 6 ∣∣ n∑
k=m+1

ξke
ikt

k

∣∣2
=
( n∑
k=m+1

ξke
ikt

k

)
·
( n∑
l=m+1

ξleilt

l

)
=
( n∑
k=m+1

ξke
ikt

k

)( n∑
l=m+1

ξle
−ilt

l

)
=

n∑
k=m+1

ξ2
k

k2
+

∑
m+16k 6=l6n

ei(k−l)t
ξkξl
kl

=
n∑

k=m+1

ξ2
k

k2
+

n−m−1∑
j=1

(
eijt + e−ijt

) n−j∑
k=m+1

ξkξk+j

k(k + j)
(j , |l − k|).

It follows that

C2
m,n 6

n∑
k=m+1

ξ2
k

k2
+ 2

n−m−1∑
j=1

∣∣ n−j∑
k=m+1

ξkξk+j

k(k + j)

∣∣.
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By using the Cauchy-Schwarz inequality (cf. Appendix (7)), we obtain

E[Cm,n]2 6 E[C2
m,n] 6

n∑
k=m+1

1

k2
+ 2

n−m−1∑
j=1

E
[∣∣ n−j∑
k=m+1

ξkξk+j

k(k + j)

∣∣]
6

n∑
k=m+1

1

k2
+ 2

n−m−1∑
j=1

E
[∣∣ n−j∑
k=m+1

ξkξk+j

k(k + j)

∣∣2]1/2.
The expectation on the right hand side is computed as

E
[∣∣ n−j∑
k=m+1

ξkξk+j

k(k + j)

∣∣2] = E
[( n−j∑

k=m+1

ξkξk+j

k(k + j)

)
·
( n−j∑
l=m+1

ξlξl+j
l(l + j)

)]
=

n−j∑
k=m+1

E[ξ2
k] · E[ξ2

k+j]

k2(k + j)2
=

n−j∑
k=m+1

1

k2(k + j)2
.

It follows that

E[Cm,n]2 6
n∑

k=m+1

1

k2
+ 2

n−m−1∑
j=1

( n−j∑
k=m+1

1

k2(k + j)2

)1/2

6
n−m
m2

+ 2(n−m)
(n−m
m4

)1/2
6

3(n−m)3/2

m2
.

In particular, by taking n = 2m, we arrive at

E[Cm,2m] 6
√

3m−1/4. (2.9)

This estimate naturally leads us to the consideration of the subsequence S(2m).
Indeed, from (2.9) we know that

E
[ ∞∑
m=1

‖S(2m) − S(2m−1)‖∞
]

=

√
2

π

∞∑
m=1

E[C2m−1,2m ] 6

√
6

π

∞∑
m=1

2−m/4 <∞.

As a result,
∞∑
m=1

‖S(2m) − S(2m−1)‖∞ <∞ a.s.

In particular, with probability one {S(2m) : m > 1} is a Cauchy sequence under
the uniform distance and is thus uniformly convergent.
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According to Lemma 2.1, there is a P-null set N, such that S(2m)
· (ω) is uni-

formly convergent at every ω /∈ N. We define a stochastic process B = {Bt : t ∈
[0, π]} by

Bt(ω) ,

{
limm→∞ S

(2m)
t (ω), ω /∈ N,

0, ω ∈ N.

To complete the proof of Theorem 2.1, we need to check that B is indeed a
Brownian motion on [0, π]. It is clear that B0 = 0 since S(n)

0 = 0 for all n. In
addition, since B is the uniform limit of S(2m), we know that the sample paths
of B are continuous. It remains to verify the desired distributional properties.
For this purpose, we rely on the following observation whose proof is left as an
exercise.

Proposition 2.2. A stochastic process {Xt : t > 0} is a Brownian motion if and
only if it satisfies Properties (i), (iv) and additionally it is a Gaussian process
(i.e. (Xt1 , · · · , Xtn) is jointly Gaussian for any choices of n and t1 < · · · < tn)
with covariance function

E[XsXt] = s ∧ t, s, t > 0. (2.10)

Since S(2m) is a Gaussian process for every m, the limiting processes B is also
Gaussian. In particular,

E[BsBt] = lim
m→∞

E[S(2m)
s S

(2m)
t ] =

st

π
+

2

π

∞∑
n=1

sinns sinnt

n2
.

To verify the desired covariance property (2.10), the following analytic identity
provides the last piece of the puzzle.

Lemma 2.2. For any s, t ∈ [0, π], we have

s ∧ t =
st

π
+

2

π

∞∑
n=1

sinns sinnt

n2
.

Proof. Let f(u) , 1[0,s](u) and g(u) , 1[0,t](u). By treating f, g as even functions
on [−π, π], their Fourier series expansions are given by (cf. (2.2), (2.3))

f(u) =
s

π
+
∞∑
n=1

2 sinns

nπ
cosnu, g(u) =

t

π
+
∞∑
n=1

2 sinnt

nπ
cosnu, u ∈ [0, π].

44



It follows that

s ∧ t =

∫ π

0

f(u)g(u)du =
st

π2

∫ π

0

du+
∞∑
n=1

4 sinns · sinnt
n2π2

∫ π

0

cos2 nudu

=
st

π
+

2

π

∞∑
n=1

sinns sinnt

n2
.

Remark 2.2. It is easy to show that {S(n)
t : n > 1} converges in L2 for each fixed

t. Indeed, from the following estimate

E
[(
S

(m)
t − S(n)

t

)2]
6

2

π

n∑
k=m+1

E[ξ2
k] sin2 kt

k2
6

2

π

n∑
k=m+1

1

k2

one sees that {S(n)
t : n > 1} is a Cauchy sequence in L2(Ω,F ,P). As a result,

it converges to some B(t) ∈ L2 for each given t. In a similar way as before,
the process {B(t) : t ∈ [0, π]} is Gaussian and satisfies the covariance property
(2.10). However, it is not clear at all why it has continuous sample paths from
this perspective. The main effort in the previous argument is to ensure this point
by proving uniform convergence.

2.2 The strong Markov property and the reflection princi-
ple

The definition of Brownian motion given in the last section does not take into
account the presence of a filtration. We shall extend the definition to include this
situation.

Definition 2.2. Let (Ω,F ,P; {Ft : t > 0}) be a given filtered probability space.
A stochastic process B = {B(t) : t > 0} is said to be an {Ft}-Brownian motion,
if it satisfies the following properties:

(i) P(B0 = 0) = 1;
(ii) B is {Ft}-adapted;
(iii) for any s < t, the random variable Bt − Bs is independent of Fs and is
Gaussian distributed with mean zero and variance t− s.
(iv) With probability one, B has continuous sample paths.
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An {Ft}-Brownian motion is a Brownian motion in the sense of Definition
2.1. In addition, a Brownian motion in the sense of Definition 2.1 is a Brownian
motion with respect to its natural filtration.

Let (Ω,F ,P; {Ft}) be a given filtered probability space and let B be an {Ft}-
Brownian motion.

The first fundamental property of Brownian motion is its Markov property.
Heuristically, the Markov property means that given the knowledge of the present
state, the history on the past does not provide any additional information on
predicting the distribution of future states (the past and future are independent
given the knowledge of the present). Mathematically, one can express the Markov
property as

P(Bt+s ∈ Γ|Ft) = P(Bt+s ∈ Γ|Bt), ∀s, t > 0,Γ ∈ B(R). (2.11)

In the Brownian context, this property is straight forward. Indeed, let us write

Bt+s = Bt+s −Bt +Bt.

Since Bt+s − Bt is independent of the entire history Ft, the distribution of the
future state Bt+s is uniquely determined by the knowledge of current state Bt and
the independent increment distribution N(0, s).

The more useful property of Brownian motion is its strong Markov property,
which asserts that the Markov property remains valid even if we take the present
time as a stopping time. Instead of formulating the general strong Markov prop-
erty, we directly state the following stronger result for the Brownian motion. Its
proof relies on the optional sampling theorem for martingales.

Theorem 2.2. Let B = {Bt} be an {Ft}-Brownian motion and let τ be a finite
{Ft}-stopping time. Then the process B(τ) , {Bτ+t − Bτ : t > 0} is a Brownian
motion which is independent of Fτ .

Remark 2.3. Theorem 2.2 implies the strong Markov property by expressing the
future state Bτ+t as

Bτ+t = Bτ+t −Bτ +Bτ = Bτ
t +Bτ .

Since Bτ
t is independent of Fτ , the distribution of Bτ+t is uniquely determined by

the present state Bτ as well as the increment distribution N(0, t).

Proof. There are two essential properties to check: the Brownian distribution of
B(τ) and its independence from Fτ . To be more specific, let 0 = t0 < t1 < · · · < tn
be an arbitrary collection of indices. We want to check that:
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(i) the random vector

X , (B
(τ)
t1 −B

(τ)
t0 , · · · , B

(τ)
tn −B

(τ)
tn−1

)

is independent of Fτ ;
(ii) X has the required Gaussian distribution, i.e. B(τ)

tk
− B(τ)

tk−1
∼ N(0, tk − tk−1)

for each k and the components of X are independent.

Since distribution and independence can both be characterised in terms of the
characteristic function (cf. Appendix (9,10)), the required Properties (i) and (ii)
are captured by the following claim in one go:

E
[
ξ · exp

(
i

n∑
k=1

θk
(
B

(τ)
tk
−B(τ)

tk−1

)]
= E[ξ] · exp

(
− 1

2

n∑
k=1

θ2
k(tk − tk−1)

)
(2.12)

for every bounded, Fτ -measurable random variable ξ and every choice of θ1, · · · , θn ∈
R. Indeed, by taking ξ = 1 one obtains

E
[

exp
(
i

n∑
k=1

θk
(
B

(τ)
tk
−B(τ)

tk−1

)]
= exp

(
− 1

2

n∑
k=1

θ2
k(tk − tk−1)

)
which yields the desired distribution of X. The equation (2.12) then becomes

E
[
ξ · exp

(
i

n∑
k=1

θk
(
B

(τ)
tk
−B(τ)

tk−1

)]
= E[ξ] · E

[
exp

(
i

n∑
k=1

θk
(
B

(τ)
tk
−B(τ)

tk−1

)]
which further implies that X and Fτ are independent due to the arbitrariness of
ξ and θ1, · · · , θn.

We now proceed to establish (2.12). The essential idea is to make use of the
optional sampling theorem for a suitable martingale. Given θ ∈ R, let us define
the process

M
(θ)
t = exp

(
iθBt +

1

2
θ2t
)
, t > 0.

Then {M (θ)
t ,Ft} is a martingale. Indeed,

E
[
M

(θ)
t |Fs

]
= E

[
M (θ)

s exp
(
iθ(Bt −Bs) +

1

2
θ2(t− s)

)
|Fs
]

= M (θ)
s E

[
exp

(
iθ(Bt −Bs) +

1

2
θ2(t− s)

)
|Fs
]

= M (θ)
s ,
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where the last identity follows from the fact that Bt − Bs ∼ N(0, t− s) and it is
independent of Fs.

Next, we claim that

E
[
eiθ(Bσ+t−Bσ)|Fσ

]
= e−θ

2t/2 (2.13)

for any finite {Ft}-stopping time σ and t > 0. This is a direct consequence of
the optional sampling theorem in the case when σ is uniformly bounded. In fact,
(2.13) is merely a rearrangement of the property

E[M
(θ)
σ+t|Fσ] = M (θ)

σ

in this case. The extension to the case when σ is unbounded is technical and
tedious, so we leave it to the end.

Assuming the correctness of (2.13), the desired claim (2.12) follows by taking
conditional expectation and applying (2.13) recursively, starting from σ , τ+tn−1,
t , tn − tn−1 and θ , θn. We unwind this process in the special case when n = 2:

E
[
ξ exp

(
iθ1(Bτ+t1 −Bτ ) + iθ2(Bτ+t2 −Bτ+t1)

)]
= E

[
E
[
ξ exp

(
iθ1(Bτ+t1 −Bτ ) + iθ2(Bτ+t2 −Bτ+t1)

)∣∣Fτ+t1

]]
= E

[
ξ exp

(
iθ1(Bτ+t1 −Bτ )

)
· E
[

exp
(
iθ2(Bτ+t1+(t2−t1) −Bτ+t1

)∣∣Fτ+t1

]]
= e−θ

2
2(t2−t1) · E

[
ξ exp

(
iθ1(Bτ+t1 −Bτ )

)]
= e−θ

2
2(t2−t1) · E

[
ξE
[

exp
(
iθ1(Bτ+t1 −Bτ )

)∣∣Fτ]]
= e−θ

2
2(t2−t1)e−θ

2
1t1 · E[ξ].

Now we return to prove (2.13) for the case when σ is unbounded. We first
consider the bounded stopping time σ ∧N and observe that

E
[
eiθ(Bσ∧N+t−Bσ∧N )|Fσ∧N

]
= e−θ

2t/2 (2.14)

which is true for every N. Since σ is assumed to be finite, we know that σ∧N ↑ σ
as N → ∞. As a result, the property (2.13) should follow by sending N → ∞
in (2.14). To make this limiting procedure rigorous, let A ∈ Fσ be given fixed.
Then we have

A = A ∩ {σ <∞} =
∞⋃
N=1

(A ∩ {σ 6 N}) ∈
∞⋃
N=1

Fσ ∩ FN =
∞⋃
N=1

Fσ∧N .

As a result, there exists N0 > 1 such that

A ∈ Fσ∧N0 ⊆ Fσ∧N ∀N > N0.
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For any such N , from the property (2.14) and the definition of the conditional
expectation, we have ∫

A

eiθ(Bσ∧N+t−Bσ∧N )dP = e−θ
2t/2P(A).

By using the dominated convergence theorem, as N →∞ we obtain∫
A

eiθ(Bσ+t−Bσ)dP = e−θ
2t/2P(A).

The claim (2.13) thus follows as A ∈ Fσ is arbitrary.

Remark 2.4. The strong Markov property remains valid if the stopping time is
only assumed to be finite almost surely. The same theorem also holds for a
multidimensional Brownian motion.

An interesting application of the strong Markov property is the reflection prin-
ciple, which is a quite useful tool for deriving deeper distributional properties of
Brownian functionals.

Let B be a Brownian motion of which all sample paths are continuous. Let
{FBt } be its natural filtration. Given x 6= 0, we define

τx , inf{t > 0 : Bt = x}

to be the first hitting time of the level x. From Proposition 1.4, we know that τx
is an {FBt }-stopping time. The following unboundedness property of Brownian
motion implies that τx is finite a.s.

Lemma 2.3. With probability one,

sup
t>0

Bt = +∞, inf
t>0

Bt = −∞.

Proof. We only need to consider the supremum as the other case follows from the
fact that −B is a Brownian motion. Let M , supt>0Bt. For each λ > 0, the
process B(λ) , {λ−1Bλ2t : t > 0} is also a Brownian motion. Since

λ−1 sup
t>0

Bt = λ−1 sup
t>0

Bλ2t = sup
t>0

B
(λ)
t ,

we find λ−1M
d
= M . As a result,

P(M > λ) = P(M > 1) ∀λ > 0
λ→∞
=⇒ P(M =∞) = P(M > 1),

P(M 6 λ) = P(M 6 1) ∀λ > 0
λ→0
=⇒ P(M 6 0) = P(M 6 1).
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Since M > 0 almost surely, we conclude that

P(M = 0 or ∞) = 1. (2.15)

To exclude the possibility of M = 0, first note that

P(M = 0) 6 P(B1 6 0, Bu 6 0 ∀u > 1). (2.16)

On the other hand, since t 7→ B1+t − B1 is a Brownian motion, from (2.15) we
know that

sup
t>0

(B1+t −B1) = 0 or ∞ a.s. (2.17)

Under the occurrence of the event on the right hand side of (2.16), the second
possibility in (2.17) is excluded and we thus obtain

P(M = 0) 6 P
(
B1 6 0, sup

t>0
(B1+t −B1) = 0

)
= P(B1 6 0) · P(M = 0)

=
1

2
P(M = 0),

where the first equality follows from the independence between B1 and {B1+t−B1 :
t > 0}. It follows that P(M = 0) = 0 and hence P(M =∞) = 1.

Let us now define a “reflected” process B̃ by

B̃t ,

{
Bt, t < τx;

2x−Bt, t > τx.
(2.18)
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The reflection principle of Brownian motion asserts that B̃ is also a Brownian
motion. The heuristic reason is simple to describe. Before the hitting time τx,
one has B̃ = B being the original Brownian motion. After time τx, one can express
B and B̃ as

Bτx+t = x+ (Bτx+t − x), B̃τx+t = x− (Bτx+t − x)

respectively. According to the strong Markov property, the process {Bτx+t−x} is
a Brownian motion independent of the history up to time τx, and so is the process
{−(Bτx+t − x)} by the reflection invariance of Brownian motion. As a result, the
two processes B and B̃ remain identically distributed after τx. Making this idea
rigorous requires a little bit of extra effort.

Proposition 2.3. The process B̃ is a Brownian motion.

Proof. Define two processes by

Yt , Bt1{t6τx}, Zt ,
(
Bt − x

)
1{t>τx}.

From the strong Markov property and the reflection invariance, we know that

(Y, τx, Z)
d
= (Y, τx,−Z).

Next, let W denote the space of all continuous paths and define a function

Ψ :W × [0,∞)×W →W

by
Ψ(y, T, z)(t) , yt1{t6T} + (x+ zt)1{t>T}, t > 0.

One checks that
Ψ(Y, τx, Z) = B, Ψ(Y, τx,−Z) = B̃.

Consequently, B d
= B̃.

2.3 Passage time distributions

The next natural question is to understand the distribution of the hitting time
τx. Hitting times are useful tools for studying the geometry of Markov processes
and harmonic functions (potential theory), and they are often related to PDE
problems. They also arise naturally in mathematical finance e.g. in the execution
of an option when the asset price hits certain barrier.
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Let B be a Brownian motion. Given x > 0, as before we define τx to be the
first time that the process B hits the level x. By using a martingale method that
is similar to the proof of the strong Markov property, one can derive the Laplace
transform of τx.

Proposition 2.4. The Laplace transform of τx is given by

E[e−λτx ] = e−x(
√

2λ), λ > 0. (2.19)

Proof. Given fixed λ > 0, the process t 7→Mt , exp(
√

2λBt− λt) is a martingale
with respected to the natural filtration of B. By applying the optional sampling
theorem to the martingale {Mt} at the bounded stopping time τx ∧ n, we have

E
[
e
√

2λBτx∧n−λτx∧n
]

= 1 ∀n > 1.

In addition, note that

e
√

2λx−λτx1{τx<∞}
n→∞←− e

√
2λBτx∧n−λτx∧n 6 e

√
2λx.

According to the dominated convergence theorem and the fact that τx is finite
a.s., we obtain

E
[
e
√

2λx−λτx
]

= 1,

which yields (2.19) after rearrangement.

A similar idea allows one to deal with the case of a double-barrier. Let a <
0 < b be given fixed. Define τa, τb as the hitting time of the levels a, b respectively
and set τa,b , τa ∧ τb. Note that τa,b is the first time that the Brownian motion
reaches the boundary of the interval [a, b].

Proposition 2.5. The Laplace transform of τa,b is given by:

E
[
e−λτa,b

]
=

cosh
(
(b+ a)

√
λ/2
)

cosh
(
(b− a)

√
λ/2
) , λ > 0, (2.20)

where coshx , ex+e−x

2
.

Proof. Let λ > 0 be given fixed. The main observation is that both of the pro-
cesses

Mt , e
√

2λBt−λt, Nt , e−
√

2λBt−λt
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are martingales. Similarly to the proof of Proposition 2.4, by applying the optional
sampling theorem to the martingales {Mt} and {Nt} respectively, we end up with

E
[
e
√

2λBτa,b−λτa,b
]

= 1, E
[
e−
√

2λBτa,b−λτa,b
]

= 1 (2.21)

The first identity in (2.21) implies

E
[
e
√

2λa−λτa,b1{τa<τb}
]

+ E
[
e
√

2λb−λτa,b1{τb<τa}
]

= 1.

The second identity in (2.21) implies

E
[
e−
√

2λa−λτa,b1{τa<τb}
]

+ E
[
e−
√

2λb−λτa,b1{τb<τa}
]

= 1.

If we set
x , E

[
e−λτa,b1{τa<τb}

]
, y , E

[
e−λτa,b1{τb<τa}

]
,

the above two equations become the linear system{
ea
√

2λx+ eb
√

2λy = 1,

e−a
√

2λx+ e−b
√

2λy = 1.

By solving the system for x, y and simplifying the result, we are led to

E[e−λτa,b ] = x+ y =
cosh

(
(b+ a)

√
λ/2
)

cosh
(
(b− a)

√
λ/2
) .

In some situations, we would like to know the entire distribution rather than
just the Laplace transform. Although an inversion formula for the Laplace trans-
form is theoretically available, implementing it in practice is often quite difficult.
In what follows, we use the reflection principle to compute the probability density
function of the hitting time τx. The double-barrier case is much more involved
and will not be discussed here.

Let St = max
06s6t

Bs denote the running maximum of Brownian motion up to time

t. We start by establishing a general formula for the joint distribution of (St, Bt).
The distribution of τx then follows easily.

Proposition 2.6. For any x, y > 0, we have
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P(St > x,Bt 6 x− y) = P(Bt > x+ y) =
1√
2π

∫ ∞
x+y√
t

e−u
2/2du. (2.22)

In particular, the joint density of (St, Bt) is given by

P(St ∈ dx,Bt ∈ dy) =
2(2x− y)√

2πt3
e−

(2x−y)2
2t dxdy, x > 0, x > y, (2.23)

and the density of τx (x > 0) is given by

P(τx ∈ dt) =
x√
2πt3

e−
x2

2t dt, t > 0. (2.24)

Proof. Let B̃ be the reflected process with respect to the level x defined by (2.18),
and we define the running maximum S̃t of B̃ accordingly. It is obvious that

{St > x} = {S̃t > x} = {τx 6 t}.

In addition, from the reflection principle (cf. Proposition 2.3), we know that B̃ is
also a Brownian motion. Therefore,

P(St > x,Bt 6 x− y)

= P
(
S̃t > x, B̃t 6 x− y

)
= P

(
St > x, B̃t 6 x− y

)
= P(St > x,Bt > x+ y) = P(Bt > x+ y),

which yields the identity (2.22).
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The claim (2.23) follows by differentiating the function F (x, z) , P(St > x,Bt 6
z), and (2.24) follows from the fact that

P(τx 6 t) = P(St > x)

= P(St > x,Bt 6 x) + P(St > x,Bt > x)

= P(Bt > x+ 0) + P(Bt > x)

= 2P(Bt > x).

Remark 2.5. From the relation

P(St > x) = 2P(Bt > x) = P(Bt > x) + P(Bt 6 −x) = P(|Bt| > x),

one finds that St
dist
= |Bt|. By explicit calculation based on the formula (2.23), one

can also verify that
St −Bt

dist
= |Bt|, 2St −Bt

dist
= Rt

for each fixed t, where Rt ,
√
X2
t + Y 2

t + Z2
t with (X, Y, Z) being a three-

dimensional Brownian motion. A remarkable theorem of P. Lévy shows that

S −B dist
= |B|, 2S −B dist

= R

as stochastic processes (cf. [16, Sec. VI.2]). These results are closely related to
the study of local times and excursion theory.

2.4 Skorokhod’s embedding theorem and Donsker’s invari-
ance principle

The Brownian motion can be constructed as the scaling limit of random walks.
This fundamental result is known as Donsker’s invariance principle. The main
idea behind understanding this relation contains two parts: one first shows that
a random walk can be embedded into a Brownian motion along a sequence of
stopping times, and the convergence of the rescaled random walk towards the
Brownian motion will then be a simple consequence of the continuity of Brownian
sample paths. Using this perspective, one also recovers the classical central limit
theorem as a byproduct!

We now make this idea more precise. Let F be a given fixed distribution on
R with mean zero and finite variance σ2.
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Definition 2.3. A random walk with step distribution F is a random sequence
given by S0 , 0, and

Sn , X1 + · · ·+Xn, n > 1,

where {Xn : n > 1} is an i.i.d. sequence of random variables with distribution F.

To think of the discrete random walk as an approximation of Brownian motion,
one needs to turn it into a continuous process and rescale it according to the
Brownian scaling property E[(Bt − Bs)

2] = t − s. This motivates the following
construction. Let n > 1 be given and we partition [0,∞) into the sub-intervals
[k−1
n
, k
n
] (k > 1). Define the rescaled random walk S(n) = {S(n)

t : t > 0} to be the
continuous process such that :

(i) S(n)
k/n , Sk/(σ

√
n) at each partition point k/n;

(ii)S(n)
t is linear within each sub-interval [k−1

n
, k
n
].

Mathematically, we have

S
(n)
t =

√
n

σ

((k
n
− t
)
Sk−1 +

(
t− k − 1

n

)
Sk
)
, t ∈

[k − 1

n
,
k

n

]
, k > 1. (2.25)

This construction respects the Brownian scaling since

E[
(
S

(n)
k/n − S

(n)
(k−1)/n

)2]
=

1

σ2n
E[X2

k ] =
1

n
.

In vague terms, Donsker’s invariance principle is stated as follows.

Theorem 2.3. The sequence of continuous processes S(n) = {S(n)
t : t > 0} “con-

verges in distribution” to the Brownian motion B = {Bt : t > 0} as n→∞.

The precise mathematical meaning of the above distributional convergence
requires the notion of weak convergence of probability measures and we will not
elaborate it here.

2.4.1 The heuristic proof of Donsker’s invariance principle

The core ingredient for proving Donsker’s invariance principle is the following
embedding theorem due to A. Skorokhod. Let B = {Bt : t > 0} be a given
Brownian motion and let {FBt } be its natural filtration.

Theorem 2.4 (Skorokhod’s Embedding Theorem). There exists an integrable
{FBt }-stopping time τ, such that Bτ

d
= F and E[τ ] = σ2.
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Let us now explain why Skorokhod’s embedding theorem can be used to es-
tablish Donsker’s invariance principle. We only outline the essential idea as the
technical details require deeper tools from weak convergence theory.

The first point is the following result which allows one to embed the entire
random walk into the Brownian motion. This is a consequence of the one-step
embedding (Theorem 2.4) together with the strong Markov property of Brownian
motion.

Corollary 2.1. Let {Sn : n > 1} be a random walk with step distribution F .
Then there exists an increasing sequence {τn : n > 1} of integrable {FBt }-stopping
times, such that {τn − τn−1} are i.i.d. with mean σ2 and Bτn

dist
= Sn for every n.

Proof. According to Skorokhod’s embedding theorem, there exists an integrable
{FBt }-stopping time τ1, such that Bτ1

d
= S1 and E[τ1] = σ2. On the other hand,

from the strong Markov property we know that t 7→ B
(τ1)
t , Bτ1+t − Bτ1 is a

Brownian motion independent of FBτ1 . By applying Skorokhod’s theorem again,
we find an integrable {FB(τ1)

t }-stopping time τ ′2 ({FB(τ1)

t } denotes the natural
filtration of B(τ1)), such that B(τ1)

τ ′2

d
= F and E[τ ′2] = σ2. Now we define τ2 , τ1+τ ′2.

Since τ ′2 is constructed from the Brownian motion B(τ1), we see that τ2 − τ1 and
τ1 are i.i.d. In addition, we have

Bτ2 = Bτ1 +B
(τ1)

τ ′2

dist
= S2.

The other τn’s are constructed in a similar inductive way.

The other point is the continuity of Brownian sample paths. For simplicity let
us assume that σ2 = 1. Since we only concern with distributional properties, we
may assume that the underlying random walk is defined by Sn = Bτn where {τn} is
the sequence of stopping times given by Corollary 2.1. Let S(n) = {S(n)

t : t > 0} be
the corresponding rescaled version defined by (2.25). We also set B(n) , { 1√

n
Bnt :

t > 0}. Note that B(n) is again a Brownian motion. As a result, to establish
Donsker’s invariance principle it is enough to compare the distributions between
S(n) and B(n).

Let us illustrate why S(n)
t and B(n)

t are closed to each other (given fixed t) as
n → ∞. Let k be the unique integer such that t ∈ [k−1

n
, k
n
). When n is large, we

have B(n)
t ≈ B

(n)
k/n and

S
(n)
t ≈ S

(n)
k/n =

1√
n
Sk =

1√
n
Bτk = B

(n)
τk/n

.
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Now the crucial point is that

τn
n

=
τ1 + (τ2 − τ1) + · · ·+ (τn − τn−1)

n
→ E[τ1] = 1

as a consequence of the strong law of large numbers since {τn − τn−1} is an i.i.d.
sequence. In particular, each summand τk−τk−1

n
is roughly equal to 1

n
and we

naturally expect that τk
n
≈ k

n
when n is large. Since Brownian sample paths are

continuous, it follows that B(n)
τk/n
≈ B

(n)
k/n and thus S(n)

t ≈ B
(n)
t .

As a direct corollary of Donsker’s invariance principle, one recovers the classical
central limit theorem in the i.i.d. case.

Corollary 2.2. Let {Xn : n > 1} be an i.i.d. sequence with finite variance.
Define Sn , X1 + · · ·+Xn. Then

Sn − E[Sn]√
Var[Sn]

dist−→ N(0, 1) as n→∞.

Proof. Define the rescaled random walk S(n) as before. It follows from Donsker’s
invariance principle that S(n)

1
dist−→ B1 as n → ∞, which is precisely the central

limit theorem.

2.4.2 Constructing solutions to Skorokhod’s embedding problem

The key missing piece in the previous discussion is the proof of Skorokhod’s em-
bedding theorem. We say that a stopping time τ is a solution to Skorokhod’s
embedding problem for the distribution F if it satisfies Theorem 2.4. As we will
see, the approach we develop in what follows provides a tractable way of con-
structing τ explicitly.

The building block: two-point distributions

Solving Skorokhod’s problem in full generality is quite challenging, but the starting
observation is not hard. We begin by considering the simplest case when F is a
two-point distribution, namely, F is the distribution of a random variable X that
achieves only two values a and b (a < 0 < b). Since E[X] = 0, the distribution of
X is uniquely determined as

P(X = a) =
b

b− a
, P(X = b) =

−a
b− a

. (2.26)
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In addition, we have E[X2] = −ab. In this case, a solution to Skorokhod’s embed-
ding problem can be constructed easily. Let us define

τa,b , inf{t > 0 : Bt /∈ (a, b)}

to be the first time that B exists the interval (a, b) (cf. Section 2.3). Note that
τa,b is an a.s. finite {FBt }-stopping time.

Proposition 2.7. The stopping time τa,b gives a solution to Skorokhod’s embed-
ding problem for the two-point distribution (2.26):

P(Bτa,b = a) =
b

b− a
, P(Bτa,b = b) =

−a
b− a

, E[τa,b] = −ab.

Proof. Note that both {Bt} and {B2
t − t} are {FBt }-martingales. By the optional

sampling theorem, we have

E[Bτa,b∧n] = 0, E[B2
τa,b∧n] = E[τa,b ∧ n].

Since
|Bτa,b∧n| 6 max(|a|, |b|) ∀n,

the dominated convergence theorem implies that

E[Bτa,b ] = 0, E[B2
τa,b

] = E[τa,b]. (2.27)

On the other hand, by definition the random variable Bτa,b only achieves the two
values a and b. The first identity in (2.27) uniquely identifies the distribution of
Bτa,b as (2.26). The second identity in (2.27) shows that τa,b is integrable and
E[τa,b] = E[X2] = −ab.

The binary splitting case

The main idea of solving Skorokhod’s problem for a general distribution F is to
approximate it by a binary splitting sequence so that one can essentially reduce
the construction to the two-point case. To make it precise, we first introduce the
following definition.

Definition 2.4. A sequence {Xn : n > 1} of random variables is called binary
splitting if for each n > 1, there exist a function fn : R × {±1} → R and a
{±1}-valued random variable Dn such that

Xn = fn(Xn−1, Dn). (2.28)

A binary splitting sequence {Xn} is called a binary splitting martingale if it is a
martingale with respect to its natural filtration.
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When n = 1 the condition (2.28) reads X1 = f1(D1), and

X2 = f2

(
f1(D1), D2

)
, X3 = f3

(
f2

(
f1(D1), D2

)
, D3

)
etc.

In particular, X1 takes (at most) two values, X2 takes (at most) four values, X3

takes (at most) eight values and so forth. If {Xn} is a binary splitting martingale,
the conditional distribution of Xn given (X1, · · · , Xn−1) is supported on the two
values {fn(Xn−1,±1)} with mean

E[Xn|X1, · · · , Xn−1] = Xn−1.

This property uniquely determines the conditional distribution of Xn|(X1,··· ,Xn−1).
In this case, Skorokhod’s embedding problem for the distribution of Xn can be
solved explicitly: one uses the strong Markov property to recursively reduce the
problem to the two-point case.

Lemma 2.4. Let {Xn : n > 1} be a binary splitting martingale such that E[Xn] =
0 and E[X2

n] <∞ for every n. Then there exists an increasing sequence {τn : n >
1} of integrable, {FBt }-stopping times such that τn is a solution to Skorokhod’s
embedding problem for the distribution of Xn (i.e. Bτn

d
= Xn and E[τn] = E[X2

n])
for every n.

Proof. Since X1 = f1(D1) has a two-point distribution, the construction of τ1 is
contained in Proposition 2.7. Explicitly, we define

τ1 , inf
{
t > 0 : Bt /∈

(
f1(−1), f1(+1)

)}
.

Then Bτ1
dist
= X1 and E[τ1] = E[X2

1 ]. Next, by the definition of binary splitting
martingale, we know that the conditional distribution of X2 given X1 takes two
values {f2(X1,±1)} with mean X1. In the meanwhile, we define

τ2 , inf{t > τ1 : Bt /∈
(
f2(Bτ1 ,−1), f2(Bτ1 ,+1)

)
}.

By the strong Markov property, the process B(τ1) , {Bτ1+t − Bτ1 : t > 0} is a
Brownian motion independent of FBτ1 . We now use Proposition 2.7 again to see
that the conditional distribution of Bτ2 given Bτ1 takes two values {f2(Bτ1 ,±1)}
with mean Bτ1 . To put it in a simple form,

Bτ2|Bτ1
dist
= X2|X1 .
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Since Bτ1
dist
= X1, it follows that

(Bτ1 , Bτ2)
d
= (X1, X2). (2.29)

To show E[τ2] = E[X2
2 ], we first note that

E[τ2 − τ1] = E[(Bτ2 −Bτ1)
2] (by (2.27))

= E[(X2 −X1)2] (by (2.29))
= E[X2

2 ] + E[X2
1 ]− 2E[X1X2]

= E[X2
2 ] + E[X2

1 ]− 2E[X1E[X2|X1]]

= E[X2
2 ] + E[X2

1 ]− 2E[X2
1 ] (martingale property)

= E[X2
2 ]− E[X2

1 ].

As a result,

E[τ2] = E[τ1] + E[τ2 − τ1] = E[X2
1 ] + E[X2

2 ]− E[X2
1 ] = E[X2

2 ].

The general case can be treated by induction. We define

τn , inf
{
t > τn−1 : Bt /∈

(
fn(Bτn−1 ,−1), fn(Bτn−1 ,+1)

)}
.

Then Bτn

∣∣
(Bτ1 ,··· ,Bτn−1 )

satisfies a two-point distribution supported on the values
{fn(Bτn−1 ,±1)} with mean Bτn−1 . On the other hand, by definition the conditional
distribution Xn|(X1,··· ,Xn−1) has exactly the same property. Therefore,

Bτn|(Bτ1 ,··· ,Bτn−1 )
d
= Xn|(X1,··· ,Xn−1).

Together with the induction hypothesis

(X1, · · · , Xn−1)
d
= (Bτ1 , · · · , Bτn−1),

we conclude that the same property holds for the n-tuple. By using the martingale
property of {Xn} in a similar way as before, we also have

E[τn] =
n∑
k=1

E[τk − τk−1] =
n∑
k=1

(
E[X2

k ]− E[X2
k−1]

)
= E[X2

n].

Remark 2.6. For more general considerations, in the definition of a binary splitting
martingale the function fn is sometimes allowed to depend on the entire history
(X1, · · · , Xn−1). We do not need this generality because in our case X1, · · · , Xn−2

are indeed uniquely determined by Xn−1.
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Approximation by binary splitting martingales

Let us now return to the general situation where X is a given random variable
with distribution F (E[X] = 0, E[X2] < ∞). The lemma below is the key step
for solving Skorokhod’s embedding problem for the distribution F .

Lemma 2.5. There exists a binary splitting martingale {Xn : n > 1} such that

Xn → X a.s. and in L2,

where convergence in L2 means E[(Xn −X)2]→ 0 as n→∞.

We first explain how this approximation result leads to a proof of Theorem
2.4. Let {Xn} be an approximating sequence given by the lemma and define
the increasing sequence of stopping times {τn} according to Lemma 2.4. Set
τ , limn→∞ τn. Since E[τn] = E[X2

n] for all n and Xn → X in L2, by taking
n → ∞ we find E[τ ] = E[X2]. This shows that τ < ∞ a.s. and due to the
continuity of Brownian sample paths we have

Bτ = lim
n→∞

Bτn a.s.

Since Bτn
d
= Xn for all n, we conclude that Bτ

d
= X. Consequently, τ is a solution

to Skorokhod’s embedding problem for X.
It now remains to prove Lemma 2.5. We only sketch the proof as the complete

details require more technical considerations.

Sketch of the proof of Lemma 2.5. Suppose that the range of X is contained in
an interval I and 0 = E[X] ∈ I. For any sub-interval J ⊆ I, we denote

cJ , E[X|X ∈ J ]

as the average of X given that it takes values in J (cf. 1.11). For instance, if X
has a density f, then

cJ =
E[X1{X∈J}]

P(X ∈ J)
=

∫
J
xf(x)dx∫
J
f(x)dx

.

We first construct X1 as follows. Note that I is divided into two sub-intervals
I1, I2 corresponding to the values of X that is below or above 0 = E[X]. We define
X1 to be the two-point random variable given by

X1 , cI11{X∈I1} + cI21{X∈I2}.
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Next we construct X2 as follows. Note that the points cI1 , cI2 together with 0
further divide I into four sub-intervals J1, J2, J3, J4. We define X2 to be the four-
point random variable given by

X2 , cJ11{X∈J1} + cJ21{X∈J2} + cJ31{X∈J3} + cJ41{X∈J4}.

It can be checked that the conditional distribution of X2 given X1 is supported
on two values with mean X1:

X2|X1=cI1
= X2|X∈I1 ∈ {cJ1 , cJ2}, E[X2|X1 = cI1 ] = cI1

and
X2|X1=cI2

= X2|X∈I2 ∈ {cJ3 , cJ4}, E[X2|X1 = cI2 ] = cI2 .

The construction of X3, X4, · · · can be performed inductively in the same manner.
In the n-th step, I is divided into 2n sub-intervals K1, · · · , K2n by all the possible
values of X1, X2, · · · , Xn−1 and the point 0. We define Xn by

Xn ,
2n∑
l=1

cKl1{X∈Kl}.

It is seen from the construction that X1, · · · , Xn−2 are determined by Xn−1 and
the conditional distribution of Xn given Xn−1 is supported on two values.

This construction provides a natural approximation ofX: when the range ofX
is partitioned into several sub-intervals say I1, · · · , Im, on each event {X ∈ Il} we
use the corresponding conditional average value to approximate the actual value
of X on this event. As a result, with no surprise one expects that Xn converges
to X in a reasonable sense. What is less obvious is that {Xn} is a binary splitting
martingale. We let the curious reader explore the missing details.

Example 2.1. Let X be a discrete uniform random variable on the four values
{−2,−1, 1, 2}. Then X1 is defined by

X1 = c11{X<0} + c21{X>0} = c11{X=−2 or −1} + c21{X=1 or 2},
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where

c1 = E[X|X < 0] = −3

2
, c2 = E[X|X > 0] =

3

2
.

The next random variable X2 is defined by

X2 = d11{X<−3/2} + d21{−3/26X<0} + d31{06X<3/2} + d41{X>3/2}

= d11{X=−2} + d21{X=−1} + d31{X=1} + d41{X=2}

= (−2) · 1{X=−2} + (−1) · 1{X=−1} + 1 · 1{X=1} + 2 · 1{X=2}

= X.

Note that
X2|X1=−3/2 ∈ {−2,−1}, X2|X1=3/2 ∈ {1, 2}.

Correspondingly,

τ1 , inf{t > 0 : Bt /∈ (−3/2, 3/2)},

τ2 ,

{
inf{t > τ1 : Bt /∈ (−2,−1)}, if Bτ1 = −3/2;

inf{t > τ1 : Bt /∈ (1, 2)}, if Bτ1 = 3/2.

In this example, after two steps we have already recovered X. There is no need
to go further as Xn = X = X2 and τn = τ2 for all n > 3. The stopping time τ2

gives a solution to Skorokhod’s problem for X.

Remark 2.7. If the distribution F is discrete and supported on finitely many
points, the aforementioned construction of {Xn} recovers X after finitely many
steps (say n steps) and the corresponding τn gives a desired solution to Skorokhod’s
embedding problem for F .
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Remark 2.8. If τ is an integrable {FBt }-stopping time τ, then Bτ is square inte-
grable and

E[Bτ ] = 0, E[B2
τ ] = E[τ ].

These are called Wald’s identities. As a result, E[X] = 0 and E[X2] < ∞ are
necessary conditions for the existence of Skorokhod’s embedding.
Remark 2.9. Skorokhod’s embedding has important applications in mathematical
finance (robust pricing and hedging). We refer the reader to [14] for an introduc-
tion as well as a discussion of other possible solutions to the embedding problem.

2.5 Erraticity of Brownian sample paths: an overview

The properties of Brownian motion we have dealt with so far are mostly distribu-
tional. On the other hand, sample path properties of Brownian motion is also a
significant topic and has important implications on the development of stochastic
calculus. In this section, we give an overview on what a generic Brownian sample
path looks like. We do not provide proofs as they are quite technical and not so
relevant to our main discussion. The essential point to have in mind is that:

Brownian sample paths are so irregular that ordinary differentiation/integration
against Brownian motion fails in a fundamental way.

The goal of stochastic calculus is to provide a new approach for the differential
calculus of Brownian motion.

In what follows, let B = {Bt : t > 0} be a given fixed one-dimensional
Brownian motion.

2.5.1 Irregularity

The following result provides some intuition towards how irregular Brownian sam-
ple paths can be (cf. [10, Sec. 2.9]).

Theorem 2.5. With probability one, the following properties hold true.

(i) the function t 7→ Bt(ω) is nowhere differentiable.
(ii) the set of local maximum/minimum points for the function t 7→ Bt(ω) is
countable and dense in [0,∞).
(iii) the function t 7→ Bt(ω) has no points of increase (t is a point of increase
of a path x : [0,∞) → R if there exists δ > 0 such that xs 6 xt 6 xu for all
s ∈ (t− δ, t) and u ∈ (t, t+ δ)).
(iv) for any given x ∈ R, the level set {t > 0 : Bt(ω) = x} is closed, unbounded,
has zero Lebesgue measure and does not contain isolated points.
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Remark 2.10. The first example of a continuous function that is nowhere differen-
tiable was discovered by K. Weierstrass in the 1870s. Sample paths of stochastic
processes provide rich examples of different kinds of pathological functions.

2.5.2 Oscillations

Hölder-continuity is a natural concept for describing the degree of oscillation for
a given function. A function f : I → R is said to be γ-Hölder continuous if

sup
s 6=t∈I

|f(t)− f(s)|
|t− s|γ

<∞.

It is known that for any 0 < γ < 1/2, with probability one every Brownian
sample path is γ-Hölder continuous on any finite interval. Moreover, the Hölder-
continuity fails when γ = 1/2 (cf. [16, Sec. I.2] for these results). To give a finer
description on the precise rate of (local) oscillation for Brownian motion, one is
led to the celebrated law of the iterated logarithm due to A. Khinchin (cf. [10,
Sec. 2.9]).

Theorem 2.6 (Law of the Iterated Logarithm). For every fixed t > 0, one has

P
(
lim
h↓0

Bt+h −Bt√
2h log log 1/h

= 1
)

= 1.

The law of iterated logarithm asserts that at a fixed time t, almost every
sample path oscillates around t with order

√
2h log log 1/h. It is important to

note that the underlying null set associated with this property depends on t. It is
not true that Khinchin’s law of the iterated logarithm holds uniformly in t with
probability one. The uniform oscillation (the exact modulus of continuity) for
Brownian sample paths was discovered by P. Lévy (cf. [10, Sec. 2.9]).

Theorem 2.7 (Lévy’s Modulus of Continuity). For each given T > 0, one has

lim
h↓0

sup
06s<t6T
t−s6h

|Bt −Bs|√
2h log 1/h

= 1 a.s.

The curious reader may wonder what the gap between Khinchin’s law of the
iterated logarithm and Lévy’s modulus of continuity is. Indeed, to one’s surprise
the set of times at which Khinchin’s law fails is not sparse at all: with probability
one, the random set {

t ∈ [0, 1] : lim
h↓0

Bt+h −Bt√
2h log 1/h

= 1
}
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is uncountable and dense in [0, 1], and the random set

{
t ∈ [0, 1] : lim

h↓0

Bt+h −Bt√
2h log log 1/h

=∞
}

has Hausdorff dimension one (cf. [15] for these deep results).

2.5.3 The p-variation of Brownian motion

Let x : [0,∞) → R be a continuous function. Given p > 1, the p-variation of x
over [s, t] is define by the quantity

‖x‖p-var;[s,t] = sup
P

(∑
tk∈P

|xtk − xtk−1
|p
)1/p

,

where the supremum is taken over all finite partitions P of [s, t]. In particular,
the 1-variation of x is its usual length. The classical Riemann-Stieltjes integration
theory (cf. [1, Chap. 7]) and the semi-classical Young’s integration theory (cf.
[11, Chap. 1]) allows one to construct integrals of the form

∫ t
0
ysdxs provided

that the functions x, y : [0,∞) → R have finite p-variation with 1 6 p < 2.
As a negative consequence, the following result (cf. [16, Sec. I.2]) destroys any
hope for establishing differential calculus for Brownian motion from the classical
viewpoint. We are thus led to the realm of stochastic calculus.

Theorem 2.8. With probability one, Brownian sample paths have infinite p-
variation on every finite interval for any 1 6 p < 2.

Remark 2.11. By using the Hölder-continuity of Brownian sample paths, it is
not hard to see that with probability one, Brownian sample paths have finite p-
variation on every finite interval when p > 2. For the critical case of p = 2, one
has ‖B‖2-var;[s,t] =∞ a.s. (cf. [6, Sec. 13.9]).
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3 Stochastic integration
Let B = {Bt : t > 0} be a one-dimensional Brownian motion defined on a given
filtered probability space (Ω,F ,P; {Ft}). The primary goal of this chapter is to
define the notion of stochastic integrals∫ t

0

ΦsdBs (3.1)

for a suitable class of stochastic processes Φ and to study their basic properties.
Apart from its own interest, this is essential for the study of stochastic differential
equations in the next chapter.

3.1 The essential structure: Itô’s isometry

The underlying idea for constructing the integral (3.1) is natural: one considers
a Riemann sum approximation and then pass to the limit in a reasonable way.
To illustrate the main idea, let us assume that the integrand process Φ is {Ft}-
adaped, has continuous sample paths and is uniformly bounded (i.e. |Φt(ω)| 6 C
with some C > 0 for all t, ω). We only work on the unit time interval [0, 1] as
there is no essential difference for a more general time horizon.

Suppose that
P : 0 = t0 < t1 < · · · < tn−1 < tn = 1

is a given finite partition of [0, 1]. It is natural to think of the Riemann sum

SP1 ,
n∑
k=1

Φuk(Btk −Btk−1
)

as an approximation of
∫ 1

0
ΦtdBt, where uk is a given point in [tk−1, tk] for each

k. More generally, the Riemann sum

SPt ,
k−1∑
l=1

Φul(Btl −Btl−1
) + Φuk(Bt −Btk−1

), t ∈ [tk−1, tk]

is a natural candidate for an approximation of
∫ t

0
ΦsdBs. Now the key point is

that, unlike the definition of Riemann integrals uk needs to be selected as the left
endpoint of [tk−1, tk], i.e. uk = tk−1. There are two basic reasons for doing so.

Reason 1. With the left endpoint selection, the process {SPt : 0 6 t 6 1} is an
{Ft}-martingale. To see this, let us assume that s < t and for simplicity that
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s, t ∈ [tk−1, tk] for some common k. By the definition of SPt (with uk , tk−1), one
has

E[SPt |Fs] = E
[ k−1∑
l=1

Φtl−1
(Btl −Btl−1

) + Φtk−1
(Bt −Btk−1

)
∣∣Fs]

=
k−1∑
l=1

Φtl−1
(Btl −Btl−1

) + Φtk−1
E[Bt −Btk−1

|Fs]

=
k−1∑
l=1

Φtl−1
(Btl −Btl−1

) + Φtk−1
(Bs −Btk−1

) = SPs .

Therefore, {SPt } is a martingale. Combining with the next reason (Itô’s isometry),
the space of martingales provides a natural (Hilbert) structure on which one can
investigate the convergence of {SPt } to obtain the definition of the integral process
t 7→

∫ t
0

ΦsdBs.
Before discussing the second reason, it is helpful to rewrite the definition of

SPt in a slightly different way. With the left endpoint selection,

ΦPt ,
n∑
k=1

Φtk−1
1(tk−1,tk](t)

is a natural approximation of the integrand {Φt : 0 6 t 6 1}. Note that ΦP is a
“simple” process in the sense that it is constant on each sub-interval [tk−1, tk]. In
this case, the definition of the stochastic integral

∫ t
0

ΦPs dBs is obvious: one should
define∫ t

0

ΦPs dBs ,
k−1∑
l=1

Φtl−1
(Btl −Btl−1

) + Φtk−1
(Bt −Btk−1

), t ∈ [tk−1, tk].

Of course this is exactly SPt (with the left endpoint selection). In other words,
the Riemann sum approximation can be viewed as the stochastic integral of a
“simple” process.

Reason 2. The second reason for choosing the left endpoint, which is also a key
feature of Itô’s calculus, is the following so-called Itô’s isometry:

E
[( ∫ 1

0

ΦPt dBt

)2]
= E

[ ∫ 1

0

(
ΦPt
)2
dt
]
. (3.2)
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To see this, by the definition of ΦPt one has

E
[( ∫ 1

0

ΦPt dBt

)2]
= E

[( n∑
k=1

Φtk−1
(Btk −Btk−1

)
)2]

=
∑
k

E
[
Φ2
tk−1

(Btk −Btk−1
)2
]

+ 2
∑
k<l

E
[
Φtk−1

(Btk −Btk−1
)Φtl−1

(Btl −Btl−1
)
]
.

By conditioning on Ftk−1
, one finds that

E
[
Φ2
tk−1

(Btk −Btk−1
)2
]

= E
[
Φ2
tk−1

E[(Btk −Btk−1
)2|Ftk−1

]
]

= E[Φ2
tk−1

] · (tk − tk−1).

In a similar way,

E
[
Φtk−1

(Btk −Btk−1
)Φtl−1

(Btl −Btl−1
)
]

= 0.

Therefore,

E
[( ∫ 1

0

ΦPt dBt

)2]
=

n∑
k=1

E
[
Φ2
tk−1

]
(tk − tk−1) = E

[ n∑
k=1

Φ2
tk−1

(tk − tk−1)
]

= E
[ ∫ 1

0

(ΦPt )2dt
]
.

We now explain how Itô’s isometry provides the essential structure for con-
structing the stochastic integral

∫ 1

0
ΦtdBt under the current assumption. For each

n > 1, define Φ(n) = {Φ(n)
t : 0 6 t 6 1} to be the left endpoint approximation of

Φ with respect to the even partition of [0, 1], i.e.

Φ
(n)
t , Φ k−1

n
for t ∈ (

k − 1

n
,
k

n
].

Recall that Φ has continuous sample paths. As a result, for each fixed (t, ω) one
has

Φ
(n)
t (ω)→ Φt(ω) as n→∞.

Since Φ is uniformly bounded, so is Φ(n) as seen from its definition. According to
the dominated convergence theorem, one concludes that

E
[ ∫ 1

0

(Φ
(n)
t − Φt)

2dt
]
→ 0 (3.3)
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as n → ∞. In other words, the approximating sequence Φ(n) converges to Φ in
the sense of (3.3). Note that any convergent sequence must be Cauchy, in the
sense that

∀ε > 0, ∃N > 0 s.t. E
[ ∫ 1

0

(Φ
(n)
t − Φ

(m)
t )2dt

]
< ε ∀m,n > N.

According to Itô’s isometry (3.2) for the “simple” process Φ(n) − Φ(m), one has

E
[( ∫ 1

0

Φ(n)dBt −
∫ 1

0

Φ(m)dBt

)2]
= E

[ ∫ 1

0

(Φ
(n)
t − Φ

(m)
t )2dt

]
.

As a consequence, the sequence of random variables Xn ,
∫ 1

0
Φ

(n)
t dBt is also a

Cauchy sequence in L2(Ω,F ,P) (the space of square integrable random variables).
It is a standard fact from functional analysis that L2(Ω,F ,P) is complete under
the metric

d(X, Y ) ,
√

E[(X − Y )2],

in the sense that every Cauchy sequence has a limit. Therefore, Xn converges
to some X ∈ L2(Ω,F ,P) which will be taken as the definition of

∫ 1

0
ΦtdBt. In

the same way, for each fixed t, one can also define
∫ t

0
ΦsdBs as the L2-limit of∫ t

0
Φ

(n)
s dBs.

The above argument outlines the essential idea behind the construction of
the stochastic integral. However, there are several points that are not entirely
satisfactory:

(i) Under the current assumption, it is an important fact that the stochastic
integral t 7→

∫ t
0

ΦsdBs is a continuous martingale. However, this is not obvious
at all from the above argument, although this point is clear when Φ is “simple”
(e.g. when Φ = ΦP). To establish this property carefully, one needs to prove
convergence at the process level in a suitable space of martingales rather than just
in L2(Ω,F ,P) for each fixed t.
(ii) The assumption that Φ is uniformly bounded is apparently too strong for
many applications. This condition can largely be relaxed. As long as

E
[ ∫ 1

0

Φ2
tdt
]
<∞, (3.4)

one can still prove a lemma that there exists a sequence of “simple” processes Φ(n)

which converges to Φ in the sense of (3.3). After this, the argument for construct-
ing the stochastic integral based on Itô’s isometry is the same as before. However,
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proving such a lemma is technically challenging (cf. Remark 3.3 below).
(iii) Even the integrability condition (3.4) itself may be too strong in some sit-
uations. In principle, we should be able to construct

∫ 1

0
ΦtdBt for any adapted

process Φ with continuous sample paths. However, not all such processes satisfy
(3.4) (e.g. Φt = eB

100
t ). Is it possible to further relax the integrability condition

(3.4) to allow a richer class of integrands?

There are several equivalent approaches to resolve the above points and give a
complete construction of the stochastic integral in full generality. Among others,
one elegant approach that contains the deeper insight into the martingale struc-
ture while at the same time avoids all the unpleasant technicalities of process
approximation (Point (ii)) is given in [16, Sec. IV.2]. This approach relies on the
method of Hilbert spaces and duality (the Riesz representation theorem). A less
abstract approach that also respects Itô’s isometry as the core structure can be
found in [10, Sec. 3.2]. This approach develops the necessary technical points
for resolving Points (i) and (ii). Both approaches require basic tools from Hilbert
spaces. For relaxing the integrability condition (3.4), both of them make use of
the notion of local martingales.

In what follows, we adopt an alternative but equivalent approach that was
essentially due to McKean [13]. This approach is elementary in the sense that
it does not involve any Hilbert space tools. In addition, one defines the integral∫ t

0
ΦsdBs under a weaker integrability condition in one go without the need of

localisation argument/local martingales. A price to pay is that the use of Itô’s
isometry becomes less transparent although this fact will be reproduced after the
construction (cf. 3.5 below).

For those whose are satisfied with the construction of
∫ t

0
ΦsdBs under the

integrability condition (3.4) and do not need the more general construction in
the next section, the following theorem summarises the essential properties of the
stochastic integral (cf. Proposition 3.1 and Proposition 3.5 below).

Theorem 3.1. Let L2(B) be the space of progressively measurable (cf. Definition
3.1 below) processes Φ that satisfy the integrability condition (3.4). Then the
following statements hold true.

(i) The stochastic integral
∫ t

0
ΦsdBs is linear in Φ :∫ t

0

(cΦs + Ψs)dBs = c

∫ t

0

ΦsdBs +

∫ t

0

ΨsdBs ∀Φ,Ψ ∈ L2(B), c ∈ R.

(ii) With probability one, t 7→
∫ t

0
ΦsdBs is continuous.

(iii) The process t 7→
∫ t

0
ΦsdBs is a square integrable martingale and one has Itô’s
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isometry:

E
[( ∫ t

0

ΦsdBs

)2]
= E

[ ∫ t

0

Φ2
sds
]
∀t ∈ [0, 1].

3.2 General construction of stochastic integrals

Throughout this section, B = {Bt : t > 0} is a one-dimensional {Ft}-Brownian
motion defined on a given filtered probability space. We only work on the unit
interval (there is no essential difference in the general case). More specifically, for
a given stochastic process Φ = {Φt : t ∈ [0, 1]}, under suitable conditions we wish
to define the integral

t 7→
∫ t

0

ΦsdBs, 0 6 t 6 1

as a stochastic process.
The conditions to be imposed on Φ contain two aspects: measurability and

integrability.

Measurability. It is natural to expect that Φ should at least be adapted to the
filtration {Ft}. However, this simple condition turns out to be technically insuf-
ficient as one often needs extra measurability properties for the sample paths of
Φ so that one can for instance consider the Lebesgue integral

∫ t
0

Φs(ω)ds for each
ω. The precise level of measurability is given by the following definition.

Definition 3.1. A stochastic process Φ = {Φt : t > 0} is said to be {Ft}-
progressively measurable if for every t > 0, the map

[0, t]× Ω 3 (s, ω) 7→ Φs(ω) ∈ R

is measurable with respect to the product σ-algebra B([0, t])⊗Ft.

To keep things simple, we will not mention and/or check this condition in any
future context (all stochastic progresses under consideration are either assumed
or seen to be {Ft}-progressively measurable). It is a good exercise that if Φ is
{Ft}-adapted and has continuous (or just right/left continuous) sample paths,
then it is progressively measurable.

Integrability. In view of Itô’s isometry (3.2), a natural integrability condition to
be imposed on the integrand Φ is that

E
[ ∫ 1

0

Φ2
tdt
]
<∞. (3.5)
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As pointed out in the last section (Point (iii)), such an condition may be too
strong in several interesting situations. A reasonable integrability assumption for
handling the most general case is given by∫ 1

0

Φ2
tdt <∞ almost surely. (3.6)

For instance, (3.6) is satisfied for any process Φ with continuous sample paths. As
we will see, under the stronger integrability condition (3.5) the process

∫ t
0

ΦsdBs

is a martingale and satisfies Itô’s isometry (cf. Proposition 3.5). However, under
the weaker condition (3.6) these properties may fail even if the process

∫ t
0

ΦsdBs

is integrable for all time! This is one of the deeper points in stochastic calculus
and we will see a concrete counterexample in the context of stochastic differential
equations (cf. Example 4.7 below).

In what follows, we develop the main steps for constructing the integral process
t 7→

∫ t
0

ΦsdBs for any given Φ = {Φt : 0 6 t 6 1} that is {Ft}-progressively mea-
surable and satisfies the integrability condition (3.6). To emphasise the essential
ideas, some technical details are omitted or presented with simplified assumptions.
Providing all the fine details is a beneficial exercise for one who has basic training
in real analysis and measure-theoretic probability.

3.2.1 Step one: integration of simple processes

Since we rely on an approximation idea, the first natural step is to construct the
stochastic integral for simple integrands (i.e. step functions).

Definition 3.2. A process Φ = {Φt : 0 6 t 6 1} is said to be simple if it can be
expressed as

Φt =
n∑
k=1

ξk−11(tk−1,tk](t), (3.7)

where 0 = t0 < t1 < · · · < tn = 1 is a finite partition of [0, 1], and ξk−1 is
a bounded, Ftk−1

-measurable random variable for each k. The class of simple
processes is denoted as E .

The definition of
∫ t

0
ΦsdBs for a simple process Φ is immediate.

Definition 3.3. Given a simple process Φ with representation (3.7), we define

I(Φ)t ,
∫ t

0

ΦsdBs ,
n∑
k=1

ξk−1(Bt∧tk −Bt∧tk−1
), 0 6 t 6 1.
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From the definition, for t ∈ (tk−1, tk] one has∫ t

0

ΦsdBs =
k−1∑
l=1

ξl−1(Btl −Btl−1
) + ξk−1(Bt −Btk−1

).

Given s < t, we also define∫ t

s

ΦudBu ,
∫ t

0

ΦudBu −
∫ s

0

ΦudBu.

The following properties are obvious from the definition.

Lemma 3.1. The integral
∫ t

0
ΦsdBs does not depend on the specific representation

of Φ ∈ E . In addition, the integral is linear in Φ (i.e. I(Φ + Ψ)t = I(Φ)t +I(Ψ)t)
and has continuous sample paths.

3.2.2 Step two: an exponential martingale property

Let Φ ∈ E . We introduce the exponential process

Mt , exp
( ∫ t

0

ΦsdBs −
1

2

∫ t

0

Φ2
sds
)
.

The choice of its particular shape is due to the following result.

Lemma 3.2. The process {Mt : 0 6 t 6 1} is an {Ft}-martingale.

Proof. Suppose that Φ is given by (3.7). Let s < t.We only discuss the case when
s, t ∈ (tk−1, tk] for some common k. In this case,∫ t

s

ΦudBu −
1

2

∫ t

s

Φ2
udu = ξk−1(Bt −Bs)−

1

2
ξ2
k−1(t− s),

and we have

E[Mt|Fs] = Ms · E
[

exp
(
ξk−1(Bt −Bs)−

1

2
ξ2
k−1(t− s)

)∣∣Fs].
Since ξk−1 ∈ Ftk−1

⊆ Fs and Bt −Bs is independent of Fs, we find that

E
[

exp
(
ξk−1(Bt −Bs)

)∣∣Fs] = exp
(1

2
ξ2
k−1(t− s)

)
.

Therefore,
E[Mt|Fs] = Ms.

If s, t belong to difference sub-intervals, say s ∈ (tl−1, tl] and t ∈ (tk−1, tk], one can
argue in a similar way by conditioning on Ftk−1

,Ftk−2
, · · · ,Ftl ,Fs recursively.
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A crucial fact about the exponential martingale {Mt} we shall use is the fol-
lowing maximal inequality.

Lemma 3.3. For any α, β > 0, we have

P
(

sup
06t61

( ∫ t

0

ΦsdBs −
α

2

∫ t

0

Φ2
sds
)
> β

)
6 e−αβ.

Proof. Define

Mα
t , exp

(
α

∫ t

0

ΦsdBs −
α2

2

∫ t

0

Φ2
sds
)
.

Lemma 3.2 shows that {Mα
t } is a martingale (with constant expectation one).

According to Doob’s maximal inequality (cf. Theorem 1.6),

P
(

sup
06t61

( ∫ t

0

ΦsdBs −
α

2

∫ t

0

Φ2
sds
)
> β

)
= P

(
sup

06t61
Mα

t > eαβ
)
6 e−αβE[Mα

1 ] = e−αβ.

Remark 3.1. The consideration of such an exponential process is of fundamental
importance in many problems (we have seen this in the discussion of Brownian
passage time distributions). At the moment its martingale property comes from
explicit calculation based on the distribution of Brownian motion. The deeper
reason behind the calculation will be clearer from the viewpoint of Itô’s formula
as well as stochastic differential equations.

3.2.3 Step three: a uniform estimate for integrals of simple processes

Recall that a sequence of events {An : n > 1} eventually happens with probability
one if

P
(
∃N s.t. An happens for all n > N

)
= 1.

Note that the number N appearing in the above probability may depend on ω.
If a property Pn (depending on n) eventually happens with probability one, we
simply write

Pn eventually w.p.1.
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Lemma 3.4. Let {Φ(n) : n > 1} be a sequence of simple processes such that∫ 1

0

(Φ
(n)
t )2dt 6 2−n eventually w.p.1.

Then for any θ > 1, we have

sup
06t61

∣∣ ∫ t

0

Φ(n)
s dBs

∣∣ 6 (1

2
+ θ
)
2−n/2

√
log n eventually w.p.1. (3.8)

Proof. For each given n, let us choose αn , 2n/2
√

log n and βn , θ2−n/2
√

log n.
By Lemma 3.3, we have

P
(

sup
06t61

( ∫ t

0

Φ(n)
s dBs −

αn
2

∫ t

0

(
Φ(n)
s

)2
ds
)
> βn

)
6 e−αnβn = n−θ.

Since θ > 1, the above probability is summable over n and from the first Borel-
Cantelli’s lemma (cf. Theorem A.1 (i) in Appendix (5)) we have

sup
06t61

( ∫ t

0

Φ(n)
s dBs −

αn
2

∫ t

0

(
Φ(n)
s

)2
ds
)
6 βn eventually w.p.1.

This implies that∫ t

0

Φ(n)
s dBs 6

αn
2

∫ t

0

(
Φ(n)
s

)2
ds+ βn

6
1

2
2n/2

√
log n ·

∫ 1

0

(
Φ(n)
s

)2
ds+ θ2−n/2

√
log n

6
(1

2
+ θ
)
2−n/2

√
log n ∀t

eventually with probability one. By considering −Φ(n) at the same time and using
the simple fact that

sup
x
|f(x)| = max

{
sup
x
f(x), sup

x
(−f(x))

}
,

we conclude that ∣∣ ∫ t

0

Φ(n)
s dBs

∣∣ 6 (1

2
+ θ
)
2−n/2

√
log n ∀t

eventually with probability one.
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Remark 3.2. The factors
(

1
2

+ θ
)
and
√

log n are of no importance. The crucial
point is that a suitable choice of αn, βn allows one to use the first Borel-Cantelli’s
lemma and at the same time the right hand side of (3.8) should define a convergent
series.

For conciseness, from now on we shall rephrase Lemma 3.4 as∫ 1

0

(Φ
(n)
t )2dt . 2−n eventually w.p.1.

=⇒ sup
06t61

∣∣ ∫ t

0

Φ(n)
s dBs

∣∣ . 2−n/2 eventually w.p.1.

The symbol . means the possibility of allowing some extra factor (e.g.
√

log n in
the lemma) whose precise value is insignificant and does not affect the convergence
of the relevant series.

3.2.4 Step four: approximation by simple processes

Let Φ = {Φt : 0 6 t 6 1} be an {Ft}-progressively measurable process such that∫ 1

0

Φ2
tdt <∞ a.s.

The key for the construction of the stochastic integral
∫ t

0
ΦsdBs is the following

lemma.

Lemma 3.5. There exists a sequence {Φ(n) : n > 1} of simple processes, such
that ∫ 1

0

(
Φ

(n)
t − Φt

)2
dt 6 2−n eventually w.p.1. (3.9)

Proof. For the sake of simplicity, we again assume that Φ is uniformly bounded
(i.e. |Φt(ω)| 6 C for all t, ω) and has continuous sample paths. For eachm > 1, we
partition [0, 1] into m sub-intervals of equal length and consider the left endpoint
approximation

Ψ
(m)
t , Φ k−1

m
if t ∈ (

k − 1

m
,
k

m
]. (3.10)

Then Ψ(m) is a simple process. As in the proof of (3.3), one sees that∫ 1

0

(
Ψ

(m)
t (ω)− Φt(ω)

)2
dt→ 0 as m→∞ (3.11)
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for every ω. In particular,∫ 1

0

(
Ψ

(m)
t − Φt

)2
dt→ 0 in probability

as m→∞. As a result, for each n > 1, there exists mn such that

P
( ∫ 1

0

(
Ψ

(mn)
t − Φt

)2
dt > 2−n

)
6 n−2.

It follows from the first Borel-Cantelli lemma that∫ 1

0

(
Ψ

(mn)
t − Φt

)2
dt 6 2−n eventually w.p.1.

The sequence Φ(n) , Ψ(mn) is desired.

Remark 3.3. The above case (Φ being continuous, uniformly bounded) has indeed
been treated in Section 3.1 under the stronger integrability condition. The main
challenging situation is when Φ is a general progressively measurable process un-
der the weaker integrability condition. To construct Φ(n) in this case, one first
approximates Φ by processes with continuous sample paths and then uses the
left endpoint approximation. The former part requires the following real analysis
fact. Let f : [0, 1]→ R be a square integrable function (extend f to R by setting
f(t) = 0 when t /∈ [0, 1]). For each h > 0, define the function

f (h)(t) ,
1

h

∫ t

t−h
f(s)ds, t ∈ [0, 1].

Then fh is continuous and one can show that

lim
h→0

∫ 1

0

(
f (h)(t)− f(t)

)2
dt = 0.

Using this idea in our stochastic context, given Φ we first define Φ(h) in the above
way. Then Φ(h) has continuous sample paths and approximates Φ in the above L2-
sense. Next, since the definition of simple processes requires uniform boundedness,
we can introduce the truncation

Φ
(h,N)
t ,


N, if Φ

(h)
t > N ;

Φ
(h)
t , if −N 6 Φ

(h)
t 6 N ;

−N, if Φ
(h)
t < −N
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before discretising it into a step function. Finally, given a finite partition P of
[0, 1] we define the step process approximation Φ(h,N,P) of Φ(h,N) by (3.10). Then
with probability one,

lim
h→0

lim
N→∞

lim
mesh(P)→0

∫ 1

0

(
Φ

(h,N,P)
t − Φt

)2
dt = 0.

From this point on, the argument of extracting a subsequence Φ(n) is not so
different from the previous proof. We let the reader think about the fine details.

3.2.5 Step five: completing the construction

To see how one can define I(Φ)t =
∫ t

0
ΦsdBs from Lemma 3.5, let {Φ(n)} be a

simple sequence satisfying (3.9). Then∫ 1

0

(
Φ

(n+1)
t − Φ

(n)
t

)2
dt . 2−n eventually w.p.1.

According to Lemma 3.4,

sup
06t61

∣∣I(Φ(n+1))t − I(Φ(n))t
∣∣ . 2−n eventually w.p.1.

Since the series of 2−n is convergent, with probability one the sequence of contin-
uous functions

[0, 1] 3 t 7→ I(Φ(n))t (n > 1)

form a Cauchy sequence with respect to the uniform distance. As a result, with
probability one it has a well-defined uniform limit I(Φ):

P
(
I(Φ(n))t converges to I(Φ)t uniformly on [0, 1]

)
= 1. (3.12)

It remains to see that the limiting process {I(Φ)t} is independent of the choice
of the approximating sequence {Φ(n)}. To simplify notation, we denote

‖f‖ ,
( ∫ 1

0

f(t)2dt
)1/2

, ‖f‖∞ , sup
06t61

|f(t)|

for any generic function f .

Lemma 3.6. Let {Ψ(n) : n > 1} be a sequence of simple processes such that

‖Ψ(n) − Φ‖2 → 0 in probability.

Then
‖I(Ψ(n))− I(Φ)‖∞ → 0 in probability. (3.13)
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Proof. It suffices to show that every subsequence of {Ψ(n)} contains a further
subsequence along which (3.13) holds. Without loss of generality, it is enough to
show that {Ψ(n)} itself contains such a subsequence. To this end, first note that

‖Ψ(n) − Φ(n)‖2 → 0 in probability

where {Φ(n)} is defined in Lemma 3.5. Similar to the proof of that lemma, one
finds a subsequence {kn} such that∫ 1

0

(
Ψ

(kn)
t − Φ

(kn)
t

)2
dt 6 2−n eventually w.p.1.

Lemma 3.4 then implies that

‖I(Ψ(kn))− I(Φ(kn))‖∞ . 2−n eventually w.p.1.

It follows that
‖I(Ψ(kn))− I(Φ)‖∞ → 0 a.s.

since I(Φ(n)) satisfies this property (cf. (3.12)).

Definition 3.4. A stochastic process Φ = {Φt : t > 0} is said to be Itô integrable
on [0, 1] if it is an {Ft}-progressively measurable process and satisfies∫ 1

0

Φ2
tdt <∞ a.s.

Given an Itô integrable process Φ, the stochastic process I(Φ) constructed in the
above steps is called the stochastic integral (also known as the Itô integral) of Φ.
It is often denoted as I(Φ)t =

∫ t
0

ΦsdBs.

Since continuous functions are bounded on finite intervals, any adapted pro-
cess with continuous sample paths is Itô integrable. Lemma 3.6 shows that the
stochastic integral is well-defined for any Itô integrable process. The same lemma
also gives its linearity as it is true for simple processes (cf. Lemma 3.1).

Proposition 3.1. The stochastic integral is linear:

I(Φ + Ψ)t = I(Φ)t + I(Ψ)t, I(cΦ)t = cI(Φ)t. (3.14)

In addition, I(Φ) has continuous sample paths.
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The following result is a generalisation of Lemma 3.6. Unfortunately its proof
is rather technical and non-inspiring (the idea is standard though: approximate
Φ by simple processes and extract subsequences in a careful way). As a result we
do not give the proof here.

Proposition 3.2. Let Φ(n),Φ (n > 1) be Itô integrable processes on [0, 1]. Suppose
that

‖Φ(n) − Φ‖2 → 0 in prob.

Then
‖I(Φ(n))− I(Φ)‖∞ → 0 in prob.

As a useful corollary, one can justify the left endpoint Riemann sum approxi-
mation for the stochastic integral that is mentioned at the beginning of the chap-
ter.

Corollary 3.1. Let Φ be an Itô integrable process on [0, 1] with left continuous
and bounded sample paths (not necessarily uniform in ω). Given a partition P of
[0, 1], let Φ(P) denote the associated left endpoint approximation of Φ with respect
to the partition P. Then

‖I(Φ(P))− I(Φ)‖∞ → 0 in prob.

as the mesh size of the partition tends to zero.

Proof. Since Φ as left continuous sample paths, we have the pointwise convergence

lim
mesh(P)→0

Φ
(P)
t (ω) = Φt(ω) ∀(t, ω) ∈ [0, 1]× Ω.

Since Φ also has bounded sample paths, the dominated convergence theorem
implies that

‖Φ(P) − Φ‖2 → 0 in prob.

The claims thus follows from Proposition 3.2.

Iterated integrals of Brownian motion: Part I

Before investigating deeper properties of stochastic integrals, we use one simple
example to illustrate how the principle of stochastic integration differs from ordi-
nary integration.
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Consider the stochastic integral
∫ t

0
BsdBs. One may naively expect that this

integral is equal to 1
2
B2

1 from the perspective of ordinary calculus. This is indeed
not true! To understand this, let

P : 0 = t0 < t1 < · · · < tn−1 < tn = t

be a given partition of [0, t]. Then one can write

B2
t =

( n∑
k=1

(Btk −Btk−1
)
)2

=
n∑
k=1

(Btk −Btk−1
)2 + 2

∑
16i<j6n

(Bti −Bti−1
)(Btj −Btj−1

)

=
n∑
k=1

(Btk −Btk−1
)2 + 2

n∑
j=1

Btj−1
(Btj −Btj−1

).

The second term converges in probability to 2
∫ t

0
BtdBt as a consequence of Corol-

lary 3.1. However, the first term does not converge to zero! This is not too
surprising if one keeps the relation

(Btk −Btk−1
)2 ≈ (tk − tk−1)

in mind, which heuristically implies that

n∑
k=1

(Btk −Btk−1
)2 ≈

n∑
k=1

(tk − tk−1) = tn − t0 = t.

The following result justifies this property precisely. Recall that Xn converges to
X in L2 if

E[|Xn −X|2]→ 0

as n→∞.

Proposition 3.3. Let t > 0 be fixed and let P = {tk}nk=0 be an arbitrary finite
partition of [0, t]. Then ∑

k

(Btk −Btk−1
)2 → t in L2

as the mesh size of P tends to zero.
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Proof. To simplify notation, we write ∆kB , Btk − Btk−1
and ∆kt , tk − tk−1.

Then we have

E
[(∑

k

(∆kB)2 − t
)2]

= E
[(∑

k

(
(∆kB)2 −∆kt

))2]
=
∑
k

E
[(

(∆kB)2 −∆kt
)2]

+
∑
i 6=j

E
[(

(∆iB)2 −∆it
)(

(∆jB)2 −∆jt
)]
.

=
∑
k

(
E[(∆kB)4]− 2∆kt · E[(∆kB)2] + (∆kt)

2
)

+ 0

= 2
∑
k

(∆kt)
2 6 2

(
max
k

∆kt
)
·
∑
k

∆kt

= 2t ·meshP .

Therefore, the left hand side converges to zero as meshP → 0.

Proposition 3.3 asserts the existence of non-zero quadratic variation for the
Brownian motion. As a result of Proposition 3.3, one finds that∫ t

0

BsdBs =
B2
t − t
2

. (3.15)

By writing it in a formal differential form, one has

dB2
t = 2BtdBt + dt. (3.16)

From this simple example, one can already see that Itô’s calculus differs from
ordinary calculus (which normally reads dx2 = 2xdx) by a second order term.
The fundamental reason behind this new phenomenon is the existence of non-zero
quadratic variation for the Brownian motion. This point will be clearer when we
study Itô’s formula in Section 3.4 below.

One can think of
∫ t

0
BsdBs itself as an integrand and further integrate against

the Brownian motion. By similar type of calculation, one finds that∫ 1

0

( ∫ t

0

BsdBs

)
dBt =

B3
1 − 3B1

6
. (3.17)

For higher order iterated integrals, it is not realistic to perform explicit calculation
and one needs a more systematic method to evaluate them. As we will see in
Section 4.3 below, these iterated Itô integrals are naturally related to the classical
Hermite polynomials.
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3.3 Martingale properties

Let us recapture what we have obtained so far. If Φ = {Φt : t > 0} is an
{Ft}-progressively measurable process such that with probability one∫ t

0

Φ2
sds <∞ ∀t > 0,

then the stochastic integral I(Φ)t =
∫ t

0
ΦsdBs (t > 0) is a well-defined {Ft}-

adapted process with continuous sample paths, and the map Φ 7→ I(Φ) is linear.
To understand deeper properties of the stochastic integral, it is essential to look
at it from the martingale perspective.

3.3.1 Square integrable martingales and the bracket process

We begin by introducing some general notions. The differential form (3.16) arises
from the formal relation that (dBt)

2 = dt. Another way to look at this property
(as well as Proposition 3.3) is that the function At , t makes the process.

One can ask the following more general question. Let M = {Mt,Ft : t > 0}
be a continuous martingale. What is (dMt)

2? This question is of fundamental
importance for developing a general theory of differential calculus with respect to
the martingale M . Inspired by the Brownian motion case, one should look for an
increasing process At such that M2

t −At is a martingale. The precise formulation
of this property is the content of the Doob-Meyer decomposition theorem. We
assume further that M is square integrable, i.e. E[M2

t ] < ∞ for all t. The
theorem asserts that one can extract a martingale part from M2

t and what is left
is a pathwisely increasing process.

Theorem 3.2 (The Doob-Meyer Decomposition Theorem). There exists a unique
{Ft}-adapted stochastic process, denoted as 〈M〉 = {〈M〉t : t > 0}, such that:

(i) 〈M〉0 = 0 a.s.;
(ii) E[〈M〉t] <∞ for all t;
(iii) with probability one, the sample paths of 〈M〉 are continuous and non-decreasing;
(iv) the process {M2

t − 〈M〉t,Ft : t > 0} is a martingale.

Remark 3.4. The proof of this theorem is rather involved and we refer the serious
reader to [10, Sec. 1.4]. It is though easy to comprehend the discrete-time situa-
tion. Let {Xn,Fn : n > 0} be a submartingale (Xn = M2

n in the above context).
We claim that there exists a unique {Fn}-predictable sequence A = {An : n > 0}
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(i.e. An ∈ Fn−1) satisfying Properties (i)–(iv) (stated in discrete-time in the ob-
vious way). Indeed, if such a process A exists, by letting Yn , Xn − An one
has

Xk −Xk−1 = Yk − Yk−1 + Ak − Ak−1.

Since {Yn} is a martingale and {An} is predictable, by taking conditional expec-
tation with respect to Fk−1, one finds

Ak − Ak−1 = E[Xk −Xk−1|Fk−1].

Summing over k from 1 to n, it follows that An has to be given by

An =
n∑
k=1

E[Xk −Xk−1|Fk−1]. (3.18)

This not only shows the uniqueness of {An} but also gives its existence defined
explicitly by (3.18). Checking the desired properties of {An} is routine.

Definition 3.5. The process 〈M〉 given by Theorem 3.2 is called the quadratic
variation process of the martingale M .

Example 3.1. For the Brownian motion {Bt}, since {B2
t − t} is a martingale

we see that 〈B〉t = t. The equation (3.15) suggests that this martingale can be
expressed as a stochastic integral 2

∫ t
0
BsdBs.

Remark 3.5. As an extension of the relation (dBt)
2 = dt, the differential calculus

for Mt should respect the relation (dMt)
2 = d〈M〉t. For instance, the analogue of

the equation (3.15) should be given by

M2
t = 2

∫ t

0

MsdMs + 〈M〉t.

This formula also indicates what the martingale M2
t −〈M〉t is: it is the stochastic

integral 2
∫ t

0
MsdMs. A more general discussion is given in Section 3.5 below.

By using a standard idea of polarisation, one can generalise the notion of
quadratic variation to the situation involving two different martingales. LetM,N
be two continuous, square integrable, {Ft}-martinagles. By the definition of the
quadratic variation process, both of the following processes

(M +N)2 − 〈M +N〉2, (M −N)2 − 〈M −N〉2
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are martingales. In addition, note that

MtNt =
(Mt +Nt)

2 − (Mt −Nt)
2

4
.

As a result, if we define the process

〈M,N〉t ,
〈M +N〉t − 〈M −N〉t

4
,

then MN − 〈M,N〉 is a martingale.

Definition 3.6. The process 〈M,N〉 is called the bracket process between the
two martingales M,N .

Remark 3.6. Similar to the quadratic variation, it can be shown that the bracket
process is the unique {Ft}-adapted process A = {At : t > 0} satisfying the
following properties:

(i) A0 = 0 a.s.;
(ii) E[|At|] <∞ for all t;
(iii) with probability one, every sample path of A is continuous and has bounded
total variation;
(iv) MN − A is an {Ft}-martingale.

The bracket process is a generalisation of the quadratic variation since 〈M,M〉 =
〈M〉. Using this uniqueness property of 〈M,N〉, one can show that the bracket
process behaves like a symmetric bilinear form.

Proposition 3.4. The bracket process is symmetric and bilinear in (M,N), i.e.

〈M,N〉 = 〈N,M〉, 〈aM1 +M2, N〉 = a〈M1, N〉+ 〈M2, N〉.

Proof. We only verify 〈M1 +M2, N〉 = 〈M1, N〉+ 〈M2, N〉. This is a consequence
of the fact that

(M1 +M2)N − 〈M1, N〉 − 〈M2, N〉
is a martingale and the uniqueness of the bracket process stated in Remark 3.6.

Example 3.2. Suppose that X, Y are two independent {Ft}-Brownian motions.
Then 〈X, Y 〉 ≡ 0. Indeed, given s < t we have

E[XtYt|Fs] = E[(Xt −Xs +Xs)(Yt − Ys + Ys)|Fs]
= E[(Xt −Xs)(Yt − Ys)|Fs] +Xs · E[Yt − Ys|Fs]

+ YsE[Xt −Xs|Fs] +XsYs

= XsYs.

This shows that XY itself is a martingale and thus 〈X, Y 〉 ≡ 0.
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Remark 3.7. The terminology of quadratic variation is justified by the fact that∑
tk∈P

(Mtk −Mtk−1
)2 → 〈M〉t in prob. (3.19)

for any fixed t and any finite partition of [0, t] whose mesh size tends to zero
(cf. Proposition 3.3 for the Brownian motion case). By using polarisation, (3.19)
further implies that∑

tk∈P

(Mtk −Mtk−1
)(Ntk −Ntk−1

)→ 〈M,N〉t in prob.

For this reason the bracket process is also known as the cross-variation process.
We do not prove these facts here and refer the reader to [16, Sec. IV.1].

3.3.2 Stochastic integrals as martingales

When the integrand Φ = {Φt : t > 0} is a simple process, by definition it is
uniformly bounded on each finite interval [0, t] (as the ξk−1’s are assumed to be
bounded). In particular, we know that

E[

∫ t

0

Φ2
sds] <∞ ∀t > 0. (3.20)

On the other hand, one can prove the following fact.

Lemma 3.7. Let Φ = {Φt : t > 0} be a simple process. Then {I(Φ)t} is a square
integrable martingale whose quadratic variation is given by

〈I(Φ)〉t =

∫ t

0

Φ2
sds.

Proof. Let Φ be represented as (3.7). By performing the same type of explicit
calculation as in Lemma 3.2, one shows that both {I(Φ)t} and {I(Φ)2

t −
∫ t

0
Φ2
sds}

are martingales.

It is interesting to ask whether a stochastic integral
∫ t

0
ΦsdBs is always a mar-

tingale in general? Of course it needs to be integrable to talk about the martingale
property. However, even if we know/assume that

∫ t
0

ΦsdBs is integrable, this pro-
cess may fail to be a martingale in general! This is counterintuitive in view of
Lemma 3.7 and obtaining a counterexample is not an easy exercise (cf. Example
4.7 below).

Nonetheless, if we assume the stronger integrability condition (3.20), no sur-
prise will be expected and we do have the nice martingale properties.
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Proposition 3.5. Suppose that Φ = {Φt : t > 0} satisfies the condition (3.20).
Then {I(Φ)t} is a square integrable martingale whose quadratic variation is given
by

〈I(Φ)〉t =

∫ t

0

Φ2
sds. (3.21)

In particular, one has Itô’s isometry

E
[( ∫ t

0

ΦsdBs

)2]
= E

[ ∫ t

0

Φ2
sds
]
. (3.22)

Proof. Let us just work on [0, 1]. The main technical point is that when choosing
the approximating sequence Φ(n) in the construction of the integral (cf. Lemma
3.5), if the condition (3.20) holds one can further require that

lim
n→∞

E
[ ∫ 1

0

(
Φ

(n)
t − Φt

)2
dt
]

= 0. (3.23)

This is already seen under the assumption that Φ has continuous sample paths
and is uniformly bounded (cf. (3.3)). The general case is technically involved but
is dealt with along the lines of Remark 3.3.

Under the extra property (3.23) for the approximating sequence, let us show
that {I(Φ)t} is a martingale. Let s < t and A ∈ Fs. We need to check that

E
[( ∫ t

0

ΦudBu

)
1A
]

= E
[( ∫ s

0

ΦudBu

)
1A
]
. (3.24)

Since {I(Φ(n))t} is a martingale, the above property is true for Φ(n). To pass to
the limit, it suffices to show that

lim
n→∞

E
[( ∫ t

0

(Φ(n)
u − Φu)dBu

)
1A
]

= 0. (3.25)

For this purpose, we first use the following estimate as a consequence of the
Cauchy-Schwarz inequality:

∣∣E[( ∫ t

0

(Φ(n)
u − Φu)dBu

)
1A
]∣∣ 6√E

[( ∫ t

0

(Φ
(n)
u − Φu)dBu

)2]
.
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The right hand side converges to zero since

E
[( ∫ t

0

(Φ(n)
u − Φu)dBu

)2]
6 lim

m→∞
E
[( ∫ t

0

(Φ(n)
u − Φ(m)

u )dBu

)2]
(Fatou’s lemma)

= lim
m→∞

E
[ ∫ t

0

(Φ(n)
u − Φ(m)

u )2du
]

= E
[ ∫ t

0

(Φ(n)
u − Φu)

2du
]
,

which tends to zero due to the choice of Φ(n). Therefore, (3.25) holds and the
martingale property (3.24) thus follows. A similar argument shows that I(Φ)2 −∫ ·

0
Φ2
sds is a martingale, hence yielding the last part of the proposition.

Due to the linearity of the stochastic integral and the usual Lebesgue integral,
the property (3.21) implies that I(Φ)I(Ψ) −

∫ ·
0

ΦtΨtdt is a martingale for any
Φ,Ψ satisfying the integrability condition (3.20). Therefore,

〈I(Φ), I(Ψ)〉t =

∫ t

0

ΦsΨsds.

Remark 3.8. When Φ is Itô integrable without the stronger integrability condition
(3.20), it is still possible to show that t 7→

∫ t
0

Φ2
sds is the quadratic variation

process of the stochastic integral
∫ t

0
ΦsdBs, in the sense that∑

tk∈P

( ∫ tk

tk−1

ΦsdBs

)2 →
∫ t

0

Φ2
sds

for any fixed t and any finite partition of [0, t] whose mesh size tends to zero.
Similarly,

∫ t
0

ΦsΨsds is the cross-variation process of the two integrals I(Φ), I(Ψ)
(cf. Remark 3.7). The best way to understand these properties (as well as Remark
3.7) is to put them in the general context of local martingales, which is beyond
the scope of the current study (cf. [10, Sec. 1.5&3.2.D]).

3.4 Itô’s formula

The special example of (3.15) can be rewritten compactly as

dB2
t = 2BtdBt + dt.

As we have pointed out before, this is different from the rule of ordinary calculus
(dx2 = 2xdx) due to the presence of the extra term dt. The occurrence of this
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second order term is a consequence of the relation (dBt)
2 = dt which is considered

as a non-negligible first order infinitesimal. This phenomenon does not exist in
ordinary calculus as (dx)2 is a negligible quantity comparing with the differential
dx. It is a prominent feature of stochastic calculus, and as we have pointed out
before the fundamental reason behind it is the existence of quadratic variation for
the Brownian motion (cf. Proposition 3.3).

With this principle in mind, at a heuristic level it is not hard to derive what
the general rule of stochastic calculus should look like. Let f : [0,∞) × R → R
be a given smooth function. From the formal Taylor expansion, we have

df(t, Bt) =
∂f

∂t
(t, Bt)dt+

∂f

∂x
(t, Bt)dBt +

1

2

∂2f

∂x2
(t, Bt)(dBt)

2

+
∂2f

∂t∂x
(t, Bt)dBtdt+

1

2

∂2f

∂t2
(t, Bt)(dt)

2

+
1

3!

∂3f

∂x3
(dBt)

3 +
3

3!

∂3f

∂x2∂t
(dBt)

2dt+ · · · .

The key principle is the relation that (dBt)
2 = dt and all those terms of order

higher than dt (e.g. dBtdt, (dBt)
3 = dBtdt, (dBt)

2dt = (dt)2 etc.) are considered
negligible. As a result, we arrive at

df(t, Bt) = ∂tf(t, Bt)dt+ ∂xf(t, Bt)dBt +
1

2
∂2
xf(t, Bt)dt.

This leads us to the renowed Itô’s formula. We say that f : [0,∞) × R → R is
a C1,2-function if it is continuously differentiable in the time variable and twice
continuously differentiable in the space variable.

Theorem 3.3 (Itô’s formula for Brownian motion). Let B be a one-dimensional
Brownian motion. Let f : [0,∞)×R→ R be a C1,2-function. Then for any s < t,
one has

f(t, Bt) = f(s, Bs) +

∫ t

s

∂tf(u,Bu)du+

∫ t

s

∂xf(u,Bu)dBu +
1

2

∫ t

s

∂2
xf(u,Bu)du.

Proof. For simplicity, we assume that s = 0, f does not depend on time and
has bounded derivatives up to order three (the result is true under the original
assumption but the proof is more technical). Let P = {tk}nk=0 be a given partition
of [0, t] and to simplify notation we define

∆kB , Btk −Btk−1
, ∆kt , tk − tk−1
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It follows from the third order Taylor expansion theorem that

f(Bt)− f(B0) =
n∑
k=1

(
f(Btk)− f(Btk−1

)
)

=
n∑
k=1

f ′(Btk−1
)∆kB +

1

2

n∑
k=1

f ′′(Btk−1
)(∆kB)2

+
1

6

n∑
k=1

f (3)(ξk)(∆kB)3 (3.26)

where ξk ∈ [Btk−1
, Btk ].

In the first place, according to Corollary 3.1 the first summation in (3.26)
converges to the stochastic integral

∫ t
0
f ′(Bs)dBs as the partition mesh tends to

zero. In addition, the last summation satisfies

∣∣ n∑
k=1

f (3)(ξk)(∆kB)3
∣∣ 6 C

n∑
k=1

∣∣Btk−Btk−1

∣∣3 6 C max
16k6n

∣∣Btk−Btk−1

∣∣· n∑
k=1

(Btk−Btk−1
)2

where C = ‖f (3)‖∞. The term maxk
∣∣Btk−Btk−1

∣∣ converges to zero a.s. as partition
mesh tends to zero due to the continuity of Brownian sample paths. The last
quadratic summation converges to t in probability by Proposition 3.3. Therefore,
the error term

n∑
k=1

f (3)(ξk)(∆kB)3 → 0 in prob.

It remains to investigate the second summation in (3.26). We claim that

n∑
k=1

f ′′(Btk−1
)(Btk −Btk−1

)2 →
∫ t

0

f ′′(Bs)ds in prob.

From Riemann integration theory, one has

n∑
k=1

f ′′(Btk−1
)(tk − tk−1)→

∫ t

0

f ′′(Bs)ds.

As a result, it suffices to show that

MP ,
n∑
k=1

f ′′(Btk−1
)
(
(∆kB)2 −∆kt

)
→ 0 in prob. (3.27)

92



as partition mesh tends to zero. To this end, note that

E[M2
P ] =

n∑
k=1

E
[
f ′′(Btk−1

)2
(
(∆kB)2 −∆kt

)2]
+ 2

∑
k<l

E
[
f ′′(Btk−1

)f ′′(Btl−1
)
(
(∆kB)2 −∆kt

)(
(∆lB)2 −∆lt

)]
.

Every term in the second summation is equal to zero as seen by conditioning on
Ftl−1

. Since f ′′ is assumed to be uniformly bounded, it follows that

E[M2
P ] 6 C1

n∑
k=1

E[
(
(∆kB)2 −∆kt

)2
] = C2

n∑
k=1

(∆kt)2 6 C2t ·meshP → 0

where C1, C2 are suitable constants whose values are of no importance. Therefore,
(3.27) holds.

The result thus follows by putting the above facts together and sending parti-
tion mesh to zero in (3.26).

Extension to Itô processes

Theorem 3.3 can be viewed as the chain rule for the composition of a function
with a Brownian motion. For more interesting applications, we need to generalise
the formula to cover the situation of composition with stochastic integrals.

Definition 3.7. A stochastic process {Xt : t > 0} is called a (one-dimensional)
Itô process if it can be written as

Xt = X0 +

∫ t

0

ΦsdBs +

∫ t

0

Ψsds,

where B is a Brownian motion, Φ is an Itô integrable process and Ψ is a progres-
sively measurable process such that with probability one

∫ t
0
|Ψs|ds < ∞ for all

t.

To motivate Itô’s formula in this context, let

X i
t = X i

0 +

∫ t

0

Φi
sdBs +

∫ t

0

Ψi
sds, 1 6 i 6 n (3.28)

be n given Itô processes (with respect to the same Brownian motion). Let f :
[0,∞) × Rn → R be a given smooth function. We want to find the chain rule
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for the composition f(t,X1
t , · · · , Xn

t ) and compute it as another Itô process. The
heuristic principle is the following. We compactly write

dX i
t = Φi

tdBt + Ψi
tdt.

In the second order Taylor expansion of f(t,X1
t , · · · , Xn

t ), we apply the following
rule:

dX i
t · dt = 0, dX i

t · dX
j
t = Φi

tΦ
j
tdt ∀i, j.

This is reasonable in view of the relations

(dBt)
2 = dt, dBt · dt = 0, (dt)2 = 0.

Therefore, in its formal differential form Itô’s formula reads

df(t,X1
t , · · · , Xn

t )

= ∂tf(t,X1
t , · · · , Xn

t )dt+
n∑
i=1

∂xif(t,X1
t , · · · , Xn

t )(Φi
tdBt + Ψi

tdt)

+
1

2

n∑
i,j=1

∂2
xixj

f(t,X1
t , · · · , Xn

t )Φi
tΦ

j
tdt.

Theorem 3.4 (Itô’s formula for Itô processes). Let {X i
t : t > 0} (1 6 i 6 n)

be Itô processes given by (3.28) and let f : [0,∞) × Rn → R be a C1,2-function.
Then for any s < t, one has

f(t,X1
t , · · · , Xn

t )

= f(s,X1
s , · · · , Xn

s ) +

∫ t

s

∂uf(u,X1
u, · · · , Xn

u )du

+
n∑
i=1

∫ t

s

∂xif(u,X1
u, · · · , Xn

u )Φi
udBu + +

n∑
i=1

∫ t

s

∂xif(u,X1
u, · · · , Xn

u )Ψi
udu

+
1

2

n∑
i,j=1

∫ t

0

∂2
xixj

f(u,X1
u, · · · , Xn

u )Φi
uΦ

j
udu (3.29)

Proof. Since one can approximate the integrands Φi,Ψi by simple processes (cf.
Lemma 3.5), according to Proposition 3.2 it is enough to prove the formula when
Φi,Ψi are simple. For the next simplification, the main observation is that the
formula (3.29) is additive: if it is true for

∫ t
s
and

∫ u
t

then it is also true for
∫ u
s
.
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Suppose for simplicity that the representations of Φi,Ψi (for all i) are over a
common partition {tk}mk=1, i.e.

Φi
t = ξik−1, Ψi

t = ηik−1 when t ∈ (tk−1, tk],

where ξik−1, η
i
k−1 are bounded and Ftk−1

-measurable. As a result of additivity, it is
enough to prove (3.29) on each sub-interval [tk−1, tk]. But over such a sub-interval,
one can view the processes X i

t as

X i
t = X i

tk−1
+

∫ t

tk−1

Φi
sdBs +

∫ t

tk−1

Ψi
sds

= X i
tk−1

+ ξik−1(Bt −Btk−1
) + ηik−1(t− tk−1).

The crucial point here is that X i
tk−1

, ξik−1, η
i
k−1 ∈ Ftk−1

are regarded as frozen
constants and B̃t , Bt − Btk−1

(t ∈ [tk−1, tk]) is a Brownian motion independent
of Ftk−1

. Therefore, the process

f(t,X1
t , · · · , Xn

t )− f(tk−1, X
1
tk−1

, · · · , Xn
tk−1

) (tk−1 6 t 6 tk)

is viewed as a function g(t, B̃t) (with the random variables from Ftk−1
being

frozen). An application of Theorem 3.3 gives (3.29) over [tk−1, tk].

Extension to higher dimensions

It is also useful to have a version of Itô’s formula in higher dimensions. Let
B = {(B1

t , · · · , Bd
t ) : t > 0} be a d-dimensional {Ft}-Brownian motion. An Itô

process with respect to the Brownian motion B takes the form

Xt = X0 +
d∑
i=1

∫ t

0

Φi
sdB

i
s +

∫ t

0

Ψsds.

Given n Itô processes of the above form and f ∈ C1,2, with the following rela-
tions in mind one can easily write down the chain rule (Itô’s formula) for the
composition f(t,X1

t , · · · , Xn
t ):

dBi
t · dB

j
t = δij · dt where δij ,

{
1, if i = j;

0, if i 6= j.
(3.30)
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The reason for the i 6= j part in (3.30) is that BiBj is a martingale when i 6= j
(cf. Example 3.2) and Bi, Bj have zero cross-variation in this case:

lim
meshP→0

∑
tk∈P

(
Bi
tk
−Bi

tk−1

)(
Bj
tk
−Bj

tk−1

)
= 0 in prob.

The explicit expression of the formula as well as its proof is left as an exercise.

As a simple application of Itô’s formula, we now provide a precise explanation
of the heat transfer problem that is discussed in the introduction (cf. (1.3)).

Let f : R → R be a bounded continuous function with bounded derivative.
Let u(t, x) be the solution to the following PDE (heat equation):

∂tu(t, x) =
1

2
∂2
xu(t, x), (t, x) ∈ (0,∞)× R

with initial condition u(0, x) = f(x). Suppose that {Bx
t : t > 0} is a one-

dimensional Brownian motion starting at x (i.e. Bx
0 = x) and T > 0 is fixed.

By applying Itô’s formula to the function (t, y) 7→ u(T − t, y) composed with Bx
t ,

one finds that

f(Bx
T ) = u(T, x) +

∫ T

0

(
− ∂tu(T − t, Bx

t ) +
1

2
∂2
xu(T − t, Bx

t )
)
dt

+

∫ T

0

u(T − t, Bx
t )dBx

t .

The Lebesgue integral term vanishes since u satisfies the heat equation. In addi-
tion, the stochastic integral is a martingale (why?) with zero expectation. Con-
sequently, we arrive at

u(T, x) = E[f(Bx
T )].

This provides a stochastic representation of the PDE solution u(t, x).

3.5 Lévy’s characterisation of Brownian motion

The notion of stochastic integrals can be further generalised to the situation where
the integrator is a martingale. More specifically, let M be a continuous, square
integrable, {Ft}-martingale. Given any {Ft}-progressively measurable process Φ
that satisfies

P
( ∫ t

0

Φ2
sd〈M〉s <∞ ∀t > 0

)
= 1,
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one can define the stochastic integral

I(Φ)t =

∫ t

0

ΦsdMs.

If Φ satisfies the stronger integrability condition

E
[ ∫ t

0

Φ2
sd〈M〉s

]
<∞ ∀t > 0,

then I(Φ) is a martingale and it satisfies the following generalised Itô’s isometry:

E
[( ∫ t

0

ΦsdMs

)2]
= E

[ ∫ t

0

Φ2
sd〈M〉s

]
.

Here the integral
∫ t

0
Φ2
sd〈M〉s is defined pathwisely for every ω. This makes sense

in the classical way (more precisely, as a Riemann-Stieltjes integral) since the
process 〈M〉 has non-decreasing sample paths. Note that the above facts are
extensions of the Brownian case, as for the latter one has 〈B〉t = t (cf. Example
3.1).

In a similar way, one can also write down Itô’s formula in this generalised
context. Let M i = {M i

t} (1 6 i 6 n) be given continuous, square integrable,
{Ft}-martingales. Let f : [0,∞) × Rn → R be a C1,2-function. To obtain Itô’s
formula for the composition f(t,M1

t , · · · ,Mn
t ), the key principle is to apply the

relations
dM i

t · dM
j
t = d〈M i,M j〉t (3.31)

and
dM i

t · dt, d〈M i,M j〉t · dMk
t , (dt)2 are all zero (3.32)

in the formal Taylor expansion of f (compare with (3.30) in the Brownian case).
As a result, one has

f(t,M1
t , · · · ,Mn

t ) = f(0,M1
0 , · · · ,Mn

0 ) +

∫ t

0

∂tf(s,M1
s , · · · ,Mn

s )du

+
n∑
i=1

∫ t

0

∂xif(s,M1
s , · · · ,Mn

s )dM i
s

+
1

2

n∑
i,j=1

∫ t

0

∂2
xixj

f(s,M1
s , · · · ,Mn

s )d〈M i,M j〉s. (3.33)
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The last integral is understood in the classical pathwise sense (as a Riemann-
Stieltjes integral). A special and useful situation is the following integration by
parts formula:

MtNt = M0N0 +

∫ t

0

MsdNs +

∫ t

0

NsdMs + 〈M,N〉t (3.34)

for any square integrable martingales M,N. This is immediate from Itô’s formula
applied to the function f(x, y) = xy.

The most elegant way of establishing this more general theory is to use Hilbert
space methods (Riesz representation theorem). We refer the reader to [16, Sec.
IV.2] for the details. Let us use one example to illustrate the usefulness of this
generalisation. Recall from (3.30) that a d-dimensional Brownian motion consists
of d square integrable martingales whose bracket processes are given by 〈Bi, Bj〉t =
δijt. The following elegant result, which was due to P. Lévy, asserts that this
property uniquely characterises the Brownian motion.

Theorem 3.5 (Lévy’s characterisation of Brownian motion). Let M i (1 6 i 6 d)
be d continuous, square integrable, {Ft}-martingales and M i

0 = 0. Suppose that

〈M i,M j〉t = δijt ∀i, j.

Then (M1, · · · ,Md) is a d-dimensional {Ft}-Brownian motion.

Proof. One needs to show the required distributional properties as well as the
independence between Mt − Ms and Fs (s < t). Inspired by the proof of the
strong Markov property (cf. (2.12)), in terms of characteristic functions all the
desired properties are encoded in the following neat equation:

E
[
ei〈θ,Mt−Ms〉Rd |Fs

]
= e−

1
2
|θ|2(t−s) ∀θ ∈ Rd. (3.35)

It suffices to establish (3.35).
To this end, with given fixed θ = (θ1, · · · , θd) ∈ Rd we apply Itô’s formula to

the composition Zt , f(t,M1
t , · · · ,Md

t ), where the function f is defined by

f(t, x1, · · · , xd) , exp
(
i

d∑
j=1

θjxj +
1

2
|θ|2t

)
.
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Since 〈M i,M j〉t = δijt by assumption, the formula (3.33) yields

Zt = Z0 +
|θ|2

2

∫ t

0

Zsds+ i

d∑
j=1

θj

∫ t

0

ZsdM
j
s

+
1

2

d∑
j=1

(iθj)
2

∫ t

0

Zsds

= 1 + i
d∑
j=1

θj

∫ t

0

ZsdM
j
s .

The stochastic integral on the right hand side is a martingale. Therefore, {Zt}
is a martingale and the desired equation (3.35) is merely a rearrangement of the
martingale property

E[Zt|Fs] = Zs.

Example 3.3. The sign function is defined by

sgn(x) ,

{
1, x > 0;

−1, x 6 0.

The stochastic integral Wt ,
∫ t

0
sgn(Bs)dBs is a well-defined square integrable

martingale. According to Proposition 3.5, one finds

〈W 〉t =

∫ t

0

(
sgn(Bs)

)2
ds =

∫ t

0

1ds = t.

By Theorem 3.5, the process W is also a Brownian motion. In addition, it can be
shown that

|Bt| = Wt + Lt, (3.36)

where Lt is the non-decreasing process defined by

Lt , lim
ε↓0

1

2ε

∫ t

0

1(−ε,ε)(Bs)ds. (3.37)

The formula (3.36) can be viewed as a generalisation of Itô’s formula to the func-
tion f(x) = |x| which is non-differentiable at the origin. The sign function can
be viewed as the derivative of f(x), leading to the stochastic integral term Wt in
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the formula (3.36). Lt can be viewed as the second order term arising from the
“second derivative” of f(x) which should not be understood in any classical sense
(in fact, 1

2
f ′′ = δ0 is a generalised function known as the Dirac delta function at

the origin). The Lebesgue integral on the right hand side of (3.37) represents the
amount of time (before t) that the Brownian motion stays in the region (−ε, ε).
As a result, Lt can be viewed as the occupation density (before t) of the Brownian
motion at the level x = 0. This is known as the local time of B at x = 0. We
refer the reader to [16, Chap. VI] for a discussion on these results as well as a
beautiful introduction to the theory of local times. Local time theory is essential
for the study of one-dimensional SDEs and diffusion processes on graphs.

3.6 A martingale representation theorem

There are several beautiful connections between continuous martingales and Brow-
nian motion. In vague terms, we describe two types of fundamental results along
this line. Let M = {Mt : t > 0} be a continuous {Ft}-martinagle.

(i) The Dambis-Dubins-Schwarz theorem: M is the time-change of some Brownian
motion, i.e. there exists a Brownian motion B such that Mt = B〈M〉t .
(ii) The martingale representation theorem: M can be written as an Itô integral
Mt = M0 +

∫ t
0

ΦsdBs.

These results suggest that continuous martingales are not very general objects:
they can be essentially reduced to Brownian motions and/or their stochastic in-
tegrals. As a consequence, the behaviour of continuous martingales is to somme
extent similar to the latter two objects.

In this section, we only elaborate one special type of martingale representation
theorems. We also take this opportunity to introduce the elegant idea of Hilbert
spaces.

Let B = {Bt : 0 6 t 6 1} be a Brownian motion defined on some filtered
probability space (Ω,FB1 ,P; {FBt : 0 6 t 6 1}). Here we particularly emphasise
that the filtration {FBt } is the natural filtration associated with B. In other words,
we work with the probability space which only carries the intrinsic information of
the Brownian motion. The martingale representation theorem in this context is
stated as follows.

Theorem 3.6. Let M = {Mt : 0 6 t 6 1} be a continuous, square integrable,
{FBt }-martingale. Then there exists a unique {FBt }-progressively measurable pro-
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cess Φ = {Φt : 0 6 t 6 1} satisfying

E
[ ∫ 1

0

Φ2
tdt
]
<∞, (3.38)

such that

Mt = M0 +

∫ t

0

ΦsdBs. (3.39)

Hilbert spaces

We will use the notion of Hilbert spaces to prove Theorem 3.6. Let us first describe
the intuition behind the abstract nonsense.

In Euclidean geometry, every element in R2 or R3 can be viewed as a vector.
There is a notion of inner product 〈v, w〉 between two vectors v, w, which satisfies
the following properties:

(i) symmetry : 〈v, w〉 = 〈w, v〉;
(ii) bilinearity : 〈cv1 + v2, w〉 = c〈v1, w〉+ 〈v2, w〉 where c ∈ R is a scalar;
(iii) positive definiteness : 〈v, v〉 > 0 where equality holds if and only if v = 0.

The inner product can be used to measure all sorts of geometric properties e.g.
length (|v| =

√
〈v, v〉), angle (∠v,w = 〈v,w〉

|v|·|w|), orthogonality (v ⊥ w ⇐⇒ 〈v, w〉 =

0) etc. Given a vector v and a subspace E ⊆ R3, one can naturally talk about
the orthogonal projection of v onto E. If E is a proper subspace (i.e. E 6= R3),
one can find at least one non-zero vector w that is perpendicular to E.

The notion of Hilbert spaces generalises the above considerations.

Definition 3.8. Let H be a vector space over R. An inner product over H is a
function 〈·, ·〉 : H×H → R which satisfies the above Properties (i)–(iii). A vector
space equipped with an inner product is called an inner product space.
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Two elements v, w are said to be orthogonal (denoted as v ⊥ w) if 〈v, w〉 = 0.
By using the inner product, one can define the notion of length (more commonly
known as a norm) by

‖v‖ ,
√
〈v, v〉, v ∈ H.

With this norm structure one can talk about convergence just like in Euclidean
spaces: we say that vn converges to v if ‖vn − v‖ → 0 as n → ∞. A sequence
{vn : n > 1} in H is said to be a Cauchy sequence in H if for any ε > 0, there
exists N > 1 such that

m,n > N =⇒ ‖vm − vn‖ < ε.

Definition 3.9. A Hilbert space is a complete inner product space, i.e. an inner
product space in which every Cauchy sequence converges.

Example 3.4. Rd is a Hilbert space when equipped with the Euclidean inner
product:

〈x, y〉 ,
√

(x1 − y1)2 + · · ·+ (xd − yd)2.

In finite dimensions there is no need to emphasise completeness as every finite
dimensional inner product space is complete. The completeness property is essen-
tial when one considers infinite dimensional spaces such as a space of functions.
In infinite dimensions it is also important to emphasise closedness when come to
the use of subspaces: a subspace E is closed if vn ∈ E, vn → v =⇒ v ∈ E. This
notion is again not needed in finite dimensions as every subspace is closed in that
case.

A favorite example of an infinite dimensional Hilbert space is the following.

Example 3.5. Let (Ω,F ,P) be a probability space. Let H = L2(Ω,F ,P) be
the space of square integrable random variables (we identify two elements X, Y if
X = Y a.s.). Define the inner product over H by

〈X, Y 〉L2 , E[XY ], X, Y ∈ H. (3.40)

Then (H, 〈·, ·〉L2) is a Hilbert space.

The most important thing to keep in mind is that all the properties we have
mentioned in the Euclidean case remain valid in a general Hilbert space. For
instance, recall that (cf. Section 1.3) the conditional expectation E[X|G] is the
orthogonal projection of X ∈ L2(Ω,F ,P) onto the closed subspace L2(Ω,G,P).
To prove the martingale representation theorem, we need one more definition and
one specific fact.

102



Definition 3.10. A subset A of a Hilbert spaceH is said to be total if no non-zero
elements in H can be perpendicular to every element in A, i.e.

v ⊥ w ∀w ∈ A =⇒ v = 0.

Example 3.6. Any two non-colinear vectors in R2 form a total subset, since no
non-zero vectors in the plane can be perpendicular to two linearly independent
vectors at the same time.

Example 3.7. Let H = L2(Ω,F ,P) and let A = {1F : F ∈ F}. Then A is a total
subset. To see this, let f 6= 0 and f ⊥ 1F for all F ∈ F . Then f is perpendicular
to all simple functions of the form

ϕ =
m∑
k=1

ak1Fk .

But any function (in particular, f) can be well approximated by simple functionns.
As a consequence, f is perpendicular to itself and thus f = 0.

Proposition 3.6. Let H be a Hilbert space and let E be a closed, proper subspace
of H. Then there exists v 6= 0 such that v is perpendicular to all elements in E.

Proof of the martingale representation theorem

The proof of Theorem 3.6 again relies on the use of exponential martingales. Let
T denote the space of step functions on [0, 1] of the form

f(t) =
n∑
k=1

ck−11(tk−1,tk](t) (3.41)

where 0 = t0 < t1 < · · · < tn = 1 is a partition of [0, 1] and ck−1 ∈ R. Given
f ∈ T , we define the exponential process

Eft , exp
( ∫ t

0

f(s)dBs −
1

2

∫ t

0

|f(s)|2ds
)
, t ∈ [0, 1].

One checks that it is a martingale.
To prove Theorem 3.6, we make use of the Hilbert space H , L2(Ω,FB1 ,P)

equipped with the inner product (3.40).

Lemma 3.8. The set {Ef1 : f ∈ T } is total in H.
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Proof. Let Y ∈ H be such that E[Y Ef1 ] = 0 for all f ∈ T . We want to show that
Y = 0. Since Y is FB1 -measurable, this is equivalent to showing that

E[Y 1A] = 0 ∀A ∈ FB1 . (3.42)

But FB1 is the σ-algebra generated by the Brownian motion. As a result, it is
enough to consider those A’s of the form

A = {ω : (Bt1 , · · · , Btn) ∈ Γ}

where 0 = t0 < t1 < · · · < tn = 1 is a partition of [0, 1] and Γ ∈ B(Rn). Given
fixed ti’s, we define the signed measure

ν(Γ) , E[Y 1Γ(Bt1 , · · · , Btn)], Γ ∈ B(Rn).

To show that ν = 0, we consider its Fourier transform

ν̂(λ1, · · · , λn) ,
∫
Rn
ei(λ1x1+···+λnxn)ν(dx)

= E
[
Y ei(λ1Bt1+···+λnBtn )

]
, (λ1, · · · , λn) ∈ Rn.

The key observation is that the exponential random variable ei(λ1Bt1+···+λnBtn ) can
be related to Ef1 for some f ∈ T . Indeed, for any f ∈ T given by (3.41), one has

Ef1 = exp
( n∑
k=1

ck−1(Btk −Btk−1
)− 1

2

∫ 1

0

|f(t)|2dt
)

= exp
( n∑
k=1

(ck−1 − ck)Btk −
1

2

∫ 1

0

|f(t)|2dt
)
.

As a result, by defining ck−1 − ck = iλk (1 6 k 6 n) or equivalently

ck , iλk + · · ·+ iλn,

the associated f satisfies

ei(λ1Bt1+···+λnBtn ) = Ef1 · exp
(1

2

∫ 1

0

|f(t)|2dt
)
.

Therefore,

ν̂(λ1, · · · , λn) = exp
(1

2

∫ 1

0

|f(t)|2dt
)
· E[Y Ef1 ] = 0

by the assumption on Y . Since the Fourier transform is one-to-one, we conclude
that ν = 0 and thus (3.42) follows.
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Remark 3.9. If one is not familiar with the language of Fourier transform, here is a
less enlightening argument. Functions of the form ei(λ1x1+···+λnxn) (with arbitrary
choices of λ1, · · · , λn) are rich enough to generate the class of bounded continuous
function. Hence

E
[
Y ei(λ1Bt1+···+λnBtn )

]
= 0 ∀λ1, · · · , λn

=⇒ E[Y f(Bt1 , · · · , Btn)] = 0 ∀bounded continuous f.

By using continuous functions to approximate indicator functions, one concludes
that

E[Y 1Γ(Bt1 , · · · , Btn)] = 0 ∀Γ ∈ B(Rn).

Let us now introduce one more Hilbert space. We denote L2(B) as the space
of progressively measurable processes Φ = {Φt : 0 6 t 6 1} satisfying the integra-
bility condition (3.38). L2(B) is a Hilbert space under the inner product

〈Φ,Ψ〉L2(B) , E
[ ∫ 1

0

ΦtΨtdt
]
, Φ,Ψ ∈ L2(B).

Proposition 3.7. Let Y ∈ H. Then there exists a unique Φ ∈ L2(B) such that

Y = E[Y ] +

∫ 1

0

ΦtdBt. (3.43)

Proof. Existence. Let E denote the collection of all those Y ∈ H which satisfies
the desired property. It is clear that E is a subspace of H. We claim that E is
closed. Let

Yn = E[Yn] +

∫ 1

0

Φ
(n)
t dBt ∈ E (3.44)

and Yn → Y in H. According to Itô’s isometry (3.22),∥∥Φ(m) − Φ(n)
∥∥2

L2(B)

= E
[ ∫ 1

0

(Φ
(m)
t − Φ

(n)
t )2dt

]
= E

[( ∫ 1

0

(Φ
(m)
t − Φ

(n)
t )dBt

)2]
= Var[Ym − Yn] 6 E[(Ym − Yn)2].

Since {Yn} is a Cauchy sequence in H (because it converges), we see that {Φ(n)} is
a Cauchy sequence in L2(B) and hence Φ(n) → Φ for some Φ ∈ L2(B). By taking
n→∞ in (3.44), one finds

Y = E[Y ] +

∫ 1

0

ΦtdBt
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and thus Y ∈ E. This shows that E is closed. We also have

{Ef1 : f ∈ T } ⊆ E,

since

Ef1 = 1 +

∫ 1

0

f(t)Eft dBt (so Φt = f(t)Eft )

as a consequence of Itô’s formula.
To prove the existence part of the proposition, one needs to show that E = H.

Suppose on the contrary that E 6= H. From Proposition 3.6, there exists Y 6= 0
such that Y is perpendicular to all elements in E. In particular, Y ⊥ Ef1 for all
f ∈ T . Since {Ef1 : f ∈ T } is total in H (cf. Lemma 3.8), we conclude that Y = 0
which is a contradiction. Therefore, E = H.

Uniqueness. Suppose that Y ∈ H admits two representations (3.43) with some
Φ,Ψ ∈ L2(B). Then

∫ 1

0
(Φt −Ψt)dBt = 0. Itô’s isometry implies that

‖Φ−Ψ‖2
L2(B) = E

[( ∫ 1

0

(Φt −Ψt)dBt

)2]
= 0.

Therefore, Φ = Ψ.

We can now easily complete the proof of the martingale representation theo-
rem.

Proof of Theorem 3.6. Let M = {Mt : 0 6 t 6 1} be a square integrable contin-
uous martingale. According to Proposition 3.7, there exists a unique Φ ∈ L2(B)
such that

M1 = E[M1] +

∫ 1

0

ΦtdBt.

In addition, the stochastic integral
∫ t

0
ΦsdBs is a martingale in this case. By

conditioning on Ft, we obtain

Mt = E[M1] +

∫ t

0

ΦsdBs.

Note that since B0 = 0, FB0 is the trivial σ-algebra {∅,Ω} and thus E[M1] =
E[M0] = M0. The representation (3.39) thus follows.
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Example 3.8. According to (3.15) and (3.17), the stochastic integrable represen-
tations of B2

1 and B3
1 (in the sense of Proposition 3.7) are given by

B2
1 = 1 + 2

∫ 1

0

BtdBt, B
3
1 =

∫ 1

0

(
6

∫ t

0

BsdBs + 3
)
dBt.

The martingale representation theorem exnteds naturally to the case of mul-
tidimensional Brownian motion without essential difficulties. We only state the
result and leave its proof to the reader.

Theorem 3.7. Let B = {Bt : t > 0} be a d-dimensional Brownian motion and let
{FBt } be its natural filtration. Let {Mt : t > 0} be a continuous, square integrable,
{FBt }-martingale. Then there exist d {FBt }-progressively measurable processes
Φ = (Φ1, · · · ,Φd) such that

Mt = M0 +
d∑
j=1

∫ t

0

Φj
sdB

j
s , t > 0.

These Φj’s are unique in the sense that if Ψ = (Ψ1, · · · ,Ψd) satisfies the same
property, then with probability one

(Φ1
t (ω), · · · ,Φd

t (ω)) = (Ψ1
t (ω), · · · ,Ψd

t (ω)) t-a.e.

Remark 3.10. It is natural to ask whether the integrand Φ can be constructed
explicitly in the representation theorem. This is a challenging but important
question whose solution, known as the Clark–Ocone–Karatzas formula, relies on
techniques from stochastic calculus of variations (the Malliavin calculus). We
refer the reader to [12, Sec. 1.6] for a discussion as well as its applications in
mathematical finance.

3.7 The Cameron-Martin-Girsanov transformation

In this section, we discuss a rather useful technical in stochastic calculus: change
of measure. Vaguely speaking, this technique allows one to eliminate the drift
effect in an Itô process or a stochastic differential equation without changing the
martingale part.

3.7.1 Motivation: the original approach of Cameron and Martin

It is well known that the Lebesgue measure on Rd is translation invariant (trans-
lating a set along any direction does not change its volume). We begin by asking
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the following question: if one considers the Gaussian measure (law of the standard
d-dimensional Gaussian vector)

ν(dx) =
1

(2π)d/2
e−|x|

2/2dx,

how does ν behave under translation?
This can be figured out easily by explicit calculation. On the canonical prob-

ability space (Rd,B(Rd), ν), the coordinate functions

ξi(x) , xi, x = (x1, · · · , xd) ∈ Rd

define a standard d-dimensional Gaussian vector

ξ = (ξ1, · · · , ξd) ∼ N(0, Id).

Given fixed h ∈ Rd, we consider the translation map Th : Rd → Rd defined by
Th(x) , x+ h. Let νh , ν ◦ (Th)

−1 denote the push-forward of ν by the map Th,
i.e.

νh(A) = ν(T−1
h A) = ν({x : x+ h ∈ A}) = ν(A− h).

To compute νh explicitly, let f : Rd → R be an arbitrary test function. By the
definition of νh,∫

Rd
f(y)νh(dy) =

∫
Rd
f(x+ h)ν(dx)

=
1

(2π)d/2

∫
Rd
f(x+ h)e−|x|

2/2dx

=
1

(2π)d/2

∫
Rd
f(y)e|y−h|

2/2dy (y , x+ h)

=

∫
Rd
f(y)e〈h,y〉Rd−|h|

2/2ν(dy).

As a result, νh is absolutely continuous with respect to ν with density function
(cf. Appendix (8) for this terminology)

dνh
dν

(x) = e〈h,x〉Rd−|h|
2/2, x ∈ Rd. (3.45)

This property is known as the quasi-invariance of Gaussian measures.
There is an equivalent way of looking that the above fact that is more relevant

to us. If we define a new measure νh by the formula (3.45), then η , ξ − h is a
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standard Gaussian vector under νh. This is because the distribution of η under
νh is the push-forward of νh by the map T−h : x 7→ x − h, which is nothing but
just the original Gaussian measure ν.

We now generalise the previous calculation to the context of Brownian motion
(the infinite dimensional situation). We first describe the canonical probability
space as the infinite dimensional analogue of (Rd,B(Rd), ν). Let W be the space
of continuous paths w : [0, 1]→ R with w0 = 0. By viewing W as a sample space,
one can define a canonical stochastic process (the coordinate process) W = {Wt :
0 6 t 6 1} by

Wt(w) , wt, w ∈ W .

There is a unique probability measure µ defined on the σ-algebra B(W) generated
by the coordinate process W , under which the process W is a Brownian motion.
Its existence can be seen as follows. Let B = {Bt : 0 6 t 6 1} be a Brownian
motion defined on some probability space (Ω,F ,P) (cf. Theorem 2.1). Since
B has continuous sample paths, it can be viewed as a “random variable” taking
values in the path space W . The measure µ is the law of B (the push-forward
of P by the map B : Ω → W). Uniqueness is obvious since the distribution of
Brownian motion is uniquely specified in its definition.

Definition 3.11. The probability space (W ,B(W), µ) is known as the Wiener
space. The measure µ is known as the Wiener measure.

The Wiener measure can be viewed as the “standard Gaussian measure” on the
path space (W ,B(W)), which is an extension of the finite dimensional situation.

We now fix a given path h ∈ W (a direction). Suppose that h has “nice”
regularity properties and let us not bother with what they are at the moment.
We again consider the translation map Th : W → W defined by Th(w) = w + h.
Let µh denote the push-forward of µ by Th.

To understand the relationship between µh and µ, we use finite dimensional
approximation. For each n > 1, consider the partition

Pn : 0 = t0 < t1 < · · · < tn = 1

of [0, 1] into n sub-intervals with equal length 1/n. Given w ∈ W , let w(n) ∈ W
be the piecewise linear interpolation of w over the partition Pn. More precisely,
w

(n)
ti = wti for ti ∈ Pn and w(n) is linear on each sub-interval associated with Pn.

Given any test function f :W → R, we define the approximation of f by f (n)(w) ,
f(w(n)). Note that f (n) depends only on the values {wt1 , · · · , wtn}. Therefore, f (n)

is essentially a function on Rn: one can write f (n)(w) = H(wt1 , · · · , wtn) where
H : Rn → R.
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Using the above notation, we perform the similar calculation as in the Rd case.
Note that under the Wiener measure, w 7→ (wt1 , · · · , wtn) is a Gaussian vector
with density

ρt1,··· ,tn(x1, · · · , xn) = C · exp
(
− 1

2

n∑
i=1

|xi − xi−1|2

ti − ti−1

)
where

C ,
1

(2π)n/2
√
t1(t2 − t1) · · · (tn − tn−1)

.

It follows that∫
W
f (n)(w)µh(dw)

=

∫
W
f (n)(w + h)µ(dw)

=

∫
W
H(wt1 + ht1 , · · · , wtn + htn)µ(dw)

= C

∫
Rn
H(x1 + ht1 , · · · , xn + htn) exp

(
− 1

2

n∑
i=1

|xi − xi−1|2

ti − ti−1

)
dx

= C

∫
Rn
H(y1, · · · , yn) exp

( n∑
i=1

hti − hti−1

ti − ti−1

· (yi − yi−1)

− 1

2

n∑
i=1

(hti − hti−1
)2

ti − ti−1

− 1

2

n∑
i=1

(yi − yi−1)2

ti − ti−1

)
dy

=

∫
W
f (n)(w) exp

( n∑
i=1

hti − hti−1

ti − ti−1

· (wti − wti−1
)− 1

2

n∑
i=1

(hti − hti−1
)2

ti − ti−1

)
µ(dw),

Here comes the crucial observation. As n → ∞, one has f (n)(w) → f(w), and it
is natural to expect that

n∑
i=1

hti − hti−1

ti − ti−1

· (wti − wti−1
)→

∫ 1

0

h′tdWt,

n∑
i=1

(hti − hti−1
)2

ti − ti−1

=
n∑
i=1

(hti − hti−1
)2

(ti − ti−1)2
· (ti − ti−1)→

∫ 1

0

(h′t)
2dt, (3.46)
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where the first limit is an Itô integral! Therefore, after taking limit we formally
arrive at∫

W
f(w)µh(dw) =

∫
W
f(w) exp

( ∫ 1

0

h′tdWt −
1

2

∫ 1

0

(h′t)
2dt
)
µ(dw).

This equation suggests that µh is absolutely continuous with respect to µ with
density

dµh
dµ

= exp

(∫ 1

0

h′tdWt −
1

2

∫ 1

0

(h′t)
2dt

)
. (3.47)

To rephrase this fact in an equivalent way, if we define µh by the formula
(3.47), under the new measure µh the translated process

W̃t , Wt − ht = Wt −
∫ t

0

h′sds

becomes a Brownian motion. This is because the distribution of W̃ under µh is
the push-forward of µh by the map T−h : w 7→ w−h, which is exactly the Wiener
measure µ.

The above discussion outlines the essential idea of R.H. Cameron and W.T.
Martin’s original work in 1944. The main technical difficulty lies in verifying
the convergence in (3.46) for a suitable class of h. It turns out that the precise
regularity assumption on h is given as follows: h needs to be absolutely continuous
and

∫ 1

0
(h′t)

2dt <∞. Cameron-Martin’s theorem can now be stated below. We refer
the reader to [19, Sec. 1.1] for a simplified modern proof.

Theorem 3.8. Let H be the space of absolutely continuous paths h ∈ W such
that

∫ 1

0
(h′t)

2dt < ∞. Then for any given h ∈ H, µh is absolutely continuous with
respect to µ with density given by (3.47). In addition, wt−

∫ t
0
h′sds is a Brownian

motion under µh.

Remark 3.11. There is a deeper result which reveals that the infinite dimensional
situation (the Brownian motion case) is drastically different from the finite dimen-
sional case: the quasi-invariance property is only true along directions in H and
µh is singular to µ for all h /∈ H. The space H, known as the Cameron-Martin
subspace, plays a fundamental role in the stochastic analysis on the Wiener space.

3.7.2 Girsanov’s approach

With the aid of martingale methods, I.V. Girsanov independently considered a
similar problem but in a more general context which we now elaborate.
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The following information is fixed throughout the whole discussion. Let B =
{(B1

t , · · · , Bd
t ) : t > 0} be a d-dimensional {Ft}-Brownian motion defined on some

filtered probability space (Ω,F ,P). For 1 6 i 6 d let X i = {X i
t : t > 0} be an Itô

integrable process with respect to Bi.
Inspired by the formula (3.47), we define the following exponential process (as

appeared for several times before!):

EXt , exp
( d∑
i=1

∫ t

0

X i
sdB

i
s −

1

2

∫ t

0

|Xs|2ds
)
, t > 0. (3.48)

By applying Itô’s formula to the exponential function, one finds that

EXt = 1 +
d∑
i=1

∫ t

0

EXs X i
sdB

i
s.

Although it is a stochastic integral, it may fail to be a martingale in general. The
entire discussion in the sequel is based on the assumption that {EXt : t > 0} is a
martingale. This will be the case for instance if

E
[ ∫ t

0

(
EXs
)2|Xs|2ds

]
<∞

as suggested by Proposition 3.5. But this condition is hard to check as it involves
the process EXt itself. There is a neat sufficient condition due to A. Novikov, which
only involves the process Xt. We sketch the proof and refer the reader to [10, Sec.
3.5.D] for the deeper details.

Theorem 3.9 (Novikov’s condition). Under the previous set-up, suppose that

E
[

exp
(1

2

∫ t

0

|Xs|2ds
)]
<∞ ∀t > 0.

Then {EXt : t > 0} is an {Ft}-martingale.

Sketch of proof. Let us writeMt ,
∑d

i=1

∫ t
0
X i
sdB

i
s.One finds that 〈M〉t =

∫ t
0
|Xs|2ds.

As a result, we can write
EXt = eMt−〈M〉t/2.

The strategy of proving the theorem contains the following steps.

(i) {EXt } is a supermartingale. To show that it is a martingale, it is enough to
prove that E[EXt ] = 1 for all t.
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(ii) Define the process Bs , Mτs , where τs is the inverse of the non-decreasing
function t 7→ 〈M〉t. Then

〈B〉s = 〈M〉τs = s

by the definition of τs. It follows from Lévy’s characterisation theorem that B is
a Brownian motion. In other words, we have written M as the time-change of a
Brownian motion: Mt = B〈M〉t .
(iii) We know that Zs , eBs−s/2 is a martingale. For fixed t > 0, by thinking of
〈M〉t as a stopping time, one expects from the optional sampling theorem that

E[Z〈M〉t ] = E[Z0] = 1,

which is exactly the desired relation

E[eMt−〈M〉t/2] = 1.

Remark 3.12. In the setting of Cameron-Martin, given h ∈ H (cf. Theorem 3.8),
by definition we know that

∫ t
0
(h′s)

2ds < ∞ for every t. Therefore, Novikov’s
condition is satisfied and the process

Eht , exp
( ∫ t

0

h′sdBs −
1

2

∫ t

0

(h′s)
2ds
)

is a martingale.
From now on, we make the following assumption exclusively.

Assumption 3.1. The process EX = {EXt } is an {Ft}-martingale.

Inspired by Cameron-Martin’s formula (3.47), for each given T > 0 we define
a new measure

QT (A) , E[1AEXT ], A ∈ FT .
According to Assumption 3.1, QT is a probability measure on (Ω,FT ). Girsanov’s
transformation theorem can now be stated as follows.

Theorem 3.10. Define the translated process B̃ = (B̃1, · · · , B̃d) by

B̃i
t , Bi

t −
∫ t

0

X i
sds. (3.49)

Under Assumption 3.1, for each T > 0 the process {B̃t : 0 6 t 6 T} is a d-
dimensional {Ft}-Brownian motion under the new measure QT .
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Example 3.9. Let d = 1 and Xt ≡ c where c 6= 0 is a deterministic constant.
Then Theorem 3.10 is satisfied and B̃t , Bt−ct (0 6 t 6 T ) is a Brownian motion
under QT . Note that under the old measure P, the process B̃ has the extra drift
term −ct (a Brownian motion with a drift). Girsanov’s theorem thus enables one
to eliminate the drift by working under the new measure QT .

The rest of this section is devoted to the proof of Theorem 3.10. We begin
with a useful lemma which enables us to compute conditional expectations under
QT .

Lemma 3.9. Let 0 6 s 6 t 6 T. Suppose that Y is an Ft-measurable random
variable which is integrable with respect to QT . Then we have:

Ẽ[Y |Fs] =
1

EXs
E[Y EXt |Fs] P and QT a.s.

where Ẽ denotes the expectation under QT .

Proof. Given A ∈ Fs, according to the martingale property of EX under P,

Ẽ[Y 1A] = E
[
Y EXT 1A

]
= E

[
Y EXt 1A

]
= E

[
E[Y EXt |Fs]1A

]
= E

[EXT
EXs

E[Y EXt |Fs]1A
]

= Ẽ
[ 1

EXs
E[Y EXt |Fs]1A

]
.

The result thus follows.

The following result is an important corollary of Lemma 3.9.

Corollary 3.2. Let M = {Mt : 0 6 t 6 T} be an {Ft}-adapted process which is
integrable with respect to QT . Then M is a martingale under QT if and only if
M · EX is a martingale under P.

Proof. According to Lemma 3.9, one has

EXs · Ẽ[Mt|Fs] = E[MtEXt |Fs].

Therefore,
Ẽ[Mt|Fs] = Ms ⇐⇒ E[MtEXt |Fs] = MsEXs .

114



The core of the proof of Girsanov’s theorem is the following relation on mar-
tingale transformations.

Proposition 3.8. Let T > 0 be fixed. Suppose that the processes X i (1 6 i 6 d)
are uniformly bounded. Given any continuous P-martingale M = {Mt : 0 6 t 6
T} with finite moments of all orders, we define the transformed process M̃ by

M̃t ,Mt −
d∑
i=1

∫ t

0

X i
sd〈M,Bi〉s, 0 6 t 6 T.

Then M̃ is a square integrable martingale under QT . In addition, the map M 7→
M̃ preserves the bracket process:

〈M̃, Ñ〉QT = 〈M,N〉P.

Proof. To prove the first claim, by Corollary 3.2 it is equivalent to showing that
M̃ · EX is a martingale under P. This is a consequence of the integration by
parts formula (cf. (3.34)). To simplify notation we perform the calculation in
differential form: under P one has

d(M̃tEXt ) = M̃tdEXt + EXt dM̃t + dEXt · dM̃t

=
d∑
i=1

M̃tEXt X i
tdB

i
t + EXt dMt −

d∑
i=1

EXt X i
td〈M,Bi〉t

+
( d∑
i=1

EXt X i
tdB

i
t

)
·
(
dMt −

d∑
j=1

Xj
sd〈M,Bj〉s

)
=

d∑
i=1

M̃tEXt X i
tdB

i
t + EXt dMt −

d∑
i=1

EXt X i
td〈M,Bi〉t

+
d∑
i=1

EXt X i
td〈M,Bi〉t

=
d∑
i=1

M̃tEXt X i
tdB

i
t + EXt dMt, (3.50)

where we have used the relations (3.31) and (3.32) to simplify the products of
differentials. Note that the right hand side of (3.50) is a martingale as it consists
of stochastic integrals. Therefore, M̃EX is a martingale under P.
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The idea of proving the second claim is similar. Given two P-martingales
M,N , one needs to show that M̃Ñ − 〈M,N〉 is a Q-martingale, or equivalently,
(M̃Ñ − 〈M,N〉)EX is a P-martingale. This can be seen by similar but lengthier
calculation as before: the integration by parts formula reveals that the product
(M̃Ñ−〈M,N〉)EX consists of martingale terms only and is thus a martingale.

Remark 3.13. The boundedness and integrability assumptions made in Proposi-
tion 3.8 is just for technical convenience to avoid the use of a localisation argument
(one checks that all the relevant stochastic integrals satisfy the strong integrabil-
ity condition and are thus martingales). These assumptions are not essential and
the result remains valid in the general context of local martingales (cf. [10, Sec.
3.5.B]).

We are now ready to give the proof of Girsanov’s theorem.

Proof of Theorem 3.10. From Theorem 3.8, we know that the process

B̃i
t , Bi

t −
d∑
j=1

∫ t

0

Xj
sd〈Bi, Bj〉s = Bi

t −
∫ t

0

X i
sds

is a martingale under Q. In addition,

〈B̃i, B̃j〉QTt = 〈Bi, Bj〉Pt = δijt.

According to Lévy’s characterization theorem, we conclude that B̃ = {(B̃1
t , · · · , B̃d

t ) :
0 6 t 6 T} is a d-dimensional, {Ft}-Brownian motion under QT .

Remark 3.14. So far we have been working on the given fixed time horizon [0, T ].
As a consequence of the martingale property, it is not hard to see that QT2|FT1 =
QT1 for any T1 < T2. One may wonder if there exists a single probability measure
Q on the “ultimate σ-algebra” F∞ , σ(∪t>0Ft) such that Q|FT = QT for all T > 0
and the process B̃ is a Brownian motion on [0,∞) under Q. This is not true on
general filtered probability spaces. It can be achieved though on the canonical
path space equipped with the natural filtration of the coordinate process. Let Ω
denote the space of continuous paths w : [0,∞)→ R and let B : Bt(w) , wt be the
coordinate process. We consider the filtered probability space (Ω,FB∞,P; {FBt })
where {FBt : t > 0} is the natural filtration associated with B and P is the law
of Brownian motion. Let c 6= 0 be a fixed number (the drift). One can show that
there exists a unique probability measure Q on FB∞ such that

B̃t , Bt − ct
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is a Brownian motion on [0,∞) under Q. This measure Q extends the previous
QT ’s to FB∞. However, unlike each QT which is absolutely continuous with respect
to P with density EXT (on FBT !), the measure Q is singular to P on FB∞ in the sense
that there exists a measurable subset Λ ∈ FB∞ such that Q(Λ) = 1 while P(Λ) = 0!
Can you find an example of such a Λ?
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4 Stochastic differential equations
A substantial part of stochastic calculus is related to the study of stochastic
differential equations (SDEs). They provide natural ways for modelling the time
evolution of systems that are subject to random effects. Apart from the applied
side, there is also an important motivation from the mathematical perspective
which we now describe.

LetA be a second order differential operator on Rn (acting on smooth functions
on Rn) defined by

A =
1

2

n∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
i=1

bi(x)
∂

∂xi
,

where aij(x), bi(x) are given functions on Rn. There are two basic questions one
can raise naturally.

Question 1 : How can one construct a Markov process X whose generator is A,
in the sense that

lim
t→0

1

t

(
E[f(Xt)|X0 = x]− f(x)

)
= (Af)(x)

for all suitably regular functions f : Rn → R?
Question 2 : How can one construct the fundamental solution to the parabolic
PDE ∂u

∂t
− A∗u = 0? Here A∗ denotes the formal adjoint of the operator A, in

the sense that ∫
Rn

(Af)(x)g(x)dx =

∫
Rn
f(x)(A∗g)(x)dx

for all smooth functions f, g with compact support. The fundamental solution is
the smallest positive solution to the equation{

∂p
∂t

(t, x, y)−A∗yp(t, x, y) = 0, t > 0;

p(0, x, y) = δx(y),
(4.1)

where A∗y means that the differential operator acts on the y variable and δx is the
Dirac delta function at x.

The first question, which is purely probabilistic, is of fundamental importance
in the theory of Markov processes. The second question, which is purely analytic,
is of fundamental importance in PDE theory. It is a remarkable fact that these two
questions are essentially equivalent. At a formal level, if a Markov process X =
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{Xx
t : t > 0, x ∈ Rn} (x records the starting position of X) solves Question 1 with

a suitably regular transition density function p(t, x, y) , P(Xx
t ∈ dy)/dy, then

p(t, x, y) solves Question 2. Conversely, if p(t, x, y) is a solution to Question 2, then
one can use standard methods in stochastic processes (Kolmogorov’s extension
theorem) to construct a Markov process with transition density function p(t, x, y)
and this Markov process solves Question 1.

It was originally suggested by P. Lévy that a probabilistic approach to these
two questions could be possible. K. Itô and P. Malliavin carried out this program
in a series of far-reaching works, in which the theory of SDEs was created and
largely developed. The philosophy of the SDE approach can be summarised as
follows. Let a(x) = σ(x) · σT (x) with some matrix-valued function σ(x). Suppose
that there exists a stochastic process Xt which solves the following SDE (written
in matrix notation): {

dXx
t = σ(Xx

t )dBt + b(Xx
t )dt, t > 0,

X0 = x,

Then the Markov process X = {Xx
t } solves Question 1, and its transition density

function p(t, x, y) , P(Xx
t ∈ dy)/dy (if it exists and is suitably regular) solves

Question 2. Even if the density function p(t, x, y) fails to exist, the equivalence
between the two questions remains valid as long as we interpret p(t, x, y) in the
distributional sense as a generalised function.

The above picture provides a natural mathematical motivation to develop the
SDE theory in depth. This is the main theme of the present chapter.

4.1 Itô’s theorem of existence and uniqueness

Let (Ω,F ,P; {Ft}) be a filtered probability space and let B = {Bt : t > 0} be a
d-dimensional {Ft}-Brownian motion. The most classical and useful type of SDEs
takes the form

dXt = σ(t,Xt)dBt + b(t,Xt)dt (4.2)

with some initial condition given by a random variable ξ ∈ F0. Here Xt takes
values in Rn, the coefficients

σ : [0,∞)× Rn → Mat(n, d), b : [0,∞)× Rn → Mat(n, 1)

are given functions where Mat(n, d) denotes the space of n × d matrices. The
equation (4.2) is thus written in matrix form. The notion of a solution should be
understood in the following integral sense.
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Definition 4.1. A stochastic process X = {Xt : t > 0} is said to be a solution
to the SDE (4.2) with initial condition ξ if it satisfies the following properties:

(i) X is {Ft}-progressively measurable;
(ii) on each finite interval, the process t 7→ σ(t,Xt) is Itô integrable and the
process t 7→ b(t,Xt) is (pathwisely) Lebesgue integrable;
(iii) X satisfies the following integral equation:

X i
t = ξi +

d∑
j=1

∫ t

0

σij(s,Xs)dB
j
s +

∫ t

0

bi(s,Xs)ds, t > 0, i = 1, · · · , n. (4.3)

When comes to the study of differential equations, before investigating solu-
tion properties one should first addresses its existence and uniqueness. In ODE
theory, the standard assumption to ensure existence and uniqueness is the Lips-
chitz condition on the coefficient function. The same principle is true in the SDE
case, and this is the content of Itô’s theorem which we elaborate in this section.
For simplicity, we assume that the Brownian motion and the equation are both
one-dimensional. There are no essential difficulties to extend the result to higher
dimensions.

Definition 4.2. A function f : [0,∞)× R→ R is said to

(i) be Lipschitz in space if there exists a constant K > 0 such that

|f(t, x)− f(t, y)| 6 K|x− y| ∀x, y, t; (4.4)

(ii) have linear growth in space if there exists a constant K > 0 such that

|f(t, x)| 6 K(1 + |x|) ∀x, t. (4.5)

Itô’s existence and uniqueness theorem is stated as follows.

Theorem 4.1. Suppose that the coefficient functions σ, b are Lipschitz and have
linear growth in space. Given any sqaure integrable initial condition ξ ∈ F0, there
exists a unique solution to the SDE (4.2) in the sense of Definition 4.2.

The simplest class of examples that satisfy the conditions in the theorem are
linear SDEs. In this case, solutions can even be constructed explicitly (cf. Section
4.3 below). In a deeper way, the linear growth condition (4.5) ensures that the
solution is finite for all time (non-explosion), while the Lipschitz condition (4.4)
is to guarantee uniqueness. If one only assumes continuity of the coefficients, it
is possible that a solution is only defined up to a finite time and then explodes
to infinity. This phenomenon already appears in the ODE case as seen from the
example below.
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Example 4.1 (Explosion). Consider the equation

xt = 1 +

∫ t

0

x2
sds.

The unique solution is given by xt = 1
1−t . This solution is only defined on [0, 1)

and explodes to infinity at time t = 1.

The following result is a useful generalisation of Theorem 4.1.

Theorem 4.2. Suppose that σ, b are continuous functions and locally Lipschitz
in space, i.e. for any x ∈ Rn there exists a neighbourhood Ux of x in which
σ, b are Lipschitz. Then for each given initial condition ξ ∈ F0, there exists a
unique solution X = {Xt : t < e} to the SDE (4.2) which is defined up to an
{Ft}-stopping time e (known as the explosion time) and one has

lim
t↑e
|Xt| =∞ on {e <∞}.

In addition, if the linear growth condition (4.5) holds for σ, b, then the solution
does not explode to infinity in finite time, i.e. P(e =∞) = 1.

Remark 4.1. A simple sufficient condition for Theorem 4.2 to hold (with possible
explosion) is that σ, b are continuously differentiable functions.

Remark 4.2. The best way to understand Theorem 4.2 is to study the so-called
Yamada-Watanabe theorem in depth. The theory asserts that

Strong "existence & uniqueness" ⇐⇒ Weak existence + Pathwise uniqueness.

It is then seen that

Continuity of σ, b =⇒Weak existence

and
Local Lipschitz =⇒ Pathwise uniqueness.

We refer the reader to [9, Chap. IV] for the discussion of this deeper theory.

If one further relaxes the conditions on the coefficient functions, there is no
guarantee on existence or uniqueness. These phenomena are again present in the
ODE case, and with no surprise they will prevail in the stochastic context. We
give two ODE examples, one for non-existence and one for non-uniqueness.
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Example 4.2 (Non-existence). Consider the equation

xt =

∫ t

0

f(xs)ds where f(x) ,

{
1, x 6 1

−1, x > 1.

Suppose that a solution xt exists. Since x0 = 0, before path xt reaches the level
x = 1 we have x′t = 1. As a result, xt = t when 0 6 t 6 1. We claim that
xt = 1 for all t > 1. Assume on the contrary that xt2 < 1 for some t2 > 1. Let
t1 , sup{t < t2 : xt > 1}. Then xt1 = 1 and xt < 1 on (t1, t2]. It follows that
x′t = 1 on [t1, t2] which clearly contradicts the fact that xt2 < xt1 . Therefore,
xt > 1 for all t > 1. Similarly, xt 6 1 on [1,∞) and thus xt = 1 on this part. But
this is impossible as it would imply 0 = x′t = f(1) = 1.

Example 4.3 (Non-uniqueness). Consider the equation

xt =

∫ t

0

|xs|αds

where α ∈ (0, 1/2). Then both xt = 0 and xt = ((1− α)t)
1

1−α are solutions.

The rest of this section is devoted to the proof of Theorem 4.1.

The proof of Itô’s theorem

The core ingredient of the proof is the following estimate, which is an immedi-
ate consequence of Doob’s Lp-inequality for submartingales. Given a stochastic
process {Xt : t > 0}, we introduce the notation

X∗t , sup
06s6t

|Xs|, t > 0.

Lemma 4.1. Let X = {Xt : t > 0} be an Itô process of the form

Xt = ξ +

∫ t

0

ΦsdBs +

∫ t

0

Ψsds.

Then for each T > 0, there exists a constant CT > 0 depending only on T, such
that

E[(X∗t )2] 6 CT
(
E[ξ2] + E

[ ∫ t

0

(Φ2
s + Ψ2

s)ds
])
∀t ∈ [0, T ].
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Proof. We assume that the stochastic integral term is a square integrable martin-
gale but the result is true in general. We first observe that

X∗t 6 |ξ|+ sup
06s6t

∣∣ ∫ t

0

ΦsdBs

∣∣+

∫ t

0

∣∣Ψs

∣∣ds,
and by applying Hölder’s inequality to the last integral we find

E[(X∗t )2] 6 3
(
|ξ|2 + sup

06s6t

∣∣ ∫ t

0

ΦsdBs

∣∣2 +
( ∫ t

0

∣∣Ψs

∣∣ds)2)
6 3
(
|ξ|2 + sup

06s6t

∣∣ ∫ t

0

ΦsdBs

∣∣2 + T
( ∫ t

0

∣∣Ψs

∣∣2ds)).
The result thus follows from Corollary (1.1) (with p = 2) applied to the non-
negative submartingale I(Φ)2 and Itô’s isometry.

With the aid of Lemma 4.1, the proof of Theorem 4.1 follows the same lines
as in the ODE case. For the existence part, one uses Picard’s iteration. For
uniqueness, one relies on the Lipschitz condition and Gronwall’s lemma. We use
the same K to denote both constants appearing in the Lipschitz condition (4.4)
and the linear growth condition (4.5).

We first prove uniqueness. Suppose that X, Y are both solutions to the SDE
(4.2). Then

Xt − Yt =

∫ t

0

(
σ(s,Xs)− σ(s, Ys)

)
dBs +

∫ t

0

(
b(s,Xs)− b(s, Ys)

)
ds.

Given fixed T > 0, according to Lemma 4.1 and the Lipschitz condition (4.4), we
have

E
[(

(X − Y )∗t
)2]

6 CTE
[ ∫ t

0

(
σ(s,Xs)− σ(s, Ys)

)2
+
(
b(s,Xs)− b(s, Ys)

)2]
ds

6 2CTK
2

∫ t

0

∣∣Xs − Ys
∣∣2ds

6 2CTK
2

∫ t

0

E[
(
(X − Y )∗s

)2
]ds (4.6)

for any t ∈ [0, T ].
To proceed further, we first introduce a useful tool known as Gronwall’s

lemma.
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Lemma 4.2. Let f : [0,∞)→ R be a non-negative continuous function. Suppose
that there exists a constant C > 0, such that

f(t) 6 C

∫ t

0

f(s)ds ∀t > 0. (4.7)

Then f = 0.

Proof. Since f is continuous, it is uniformly bounded, say 0 6 f(t) 6M for all t.
By iterating the assumption (4.7), one finds

f(t) 6 C

∫ t

0

(
C

∫ s

0

f(v)dv
)
ds 6 C

∫ t

0

(
C

∫ s

0

(
C

∫ v

0

f(u)du
)
dv
)
ds 6 · · ·

6 Cn

∫
0<t1<···<tn<t

f(t1)dt1 · · · dtn 6MCn

∫
0<t1<···<tn<t

dt1 · · · dtn.

We claim that ∫
0<t1<···<tn<t

dt1 · · · dtn =
tn

n!
. (4.8)

Indeed, this integral is the volume of the n-dimensional simplex

{(t1, · · · , tn) ∈ [0, t]n : t1 < t2 < · · · < tn}.

But the n-dimensional cube [0, t] can be divided into n! congruent simplices (each
one is obtained by permuting the condition t1 < · · · < tn). Therefore, as one
particular simplex among the n! ones, the formula (4.8) holds. It follows that

f(t) 6
MCntn

n!
.

Since this is true for all n, we conclude that f = 0.

We now return to the uniqueness part (cf. (4.6)). By applying Gronwall’s
lemma to the function

f(t) = E
[(

(X − Y )∗t
)2]
, 0 6 t 6 T,

we find that f = 0. In particular, E
[(

(X − Y )∗T
)2]

= 0, which implies that with
probability one, X = Y as a function of time over [0, T ]. The uniqueness of
solution follows since T is arbitrary.
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Next, we prove the existence of solution. The essential idea is summarised
conceptually as follows. We regard the right hand side of (4.3) as a transformation
sending a given process X to another process

T (X) , ξ +

∫ ·
0

σ(t,Xt)dBt +

∫ ·
0

b(t,Xt)dt.

From this viewpoint, a solution to the SDE is merely a fixed point of the trans-
formation T , i.e. a process X satisfying T (X) = X. The idea of locating the
fixed point is very simple: one starts with a stupid initial guess X(0) and define
inductively

X(n+1) , T (X(n)) (4.9)

to refine the guess. If we are able to show that the sequence {X(n)} converges to
some process X, by taking limit in (4.9) we shall have X = T (X), and thus X is
a desired solution. This procedure is known as Picard’s iteration.

We now develop the mathematical details. It is enough to only work on a
fixed interval [0, T ]. Indeed, if we are able to construct solutions on [0, T1] and
[0, T2] (T1 < T2), the uniqueness part implies that the two solutions coincide
on the common interval [0, T1]. This allows one to see that solutions defined on
the intervals [0, T ] (with different T ’s) are consistent, hence patching to a global
solution on [0,∞).

Let T be fixed. Recall that ξ ∈ F0 is the initial condition. For t ∈ [0, T ] we
set

X
(0)
t , ξ

and inductively define

X
(n+1)
t , ξ +

∫ t

0

σ(s,X(n)
s )dBs +

∫ t

0

b(s,X(n)
s )ds, n > 1. (4.10)

In exactly the same way leading to (4.6), we find that

E
[((

X(n+1) −X(n)
)∗
t

)2]
6 C1

∫ t

0

E[
(
(X(n) −X(n−1))∗s

)2
]ds

where C1 is a suitable constant (depending on T and K). By iterating this in-

125



equality as in the proof of Lemma 4.2, we obtain

E
[((

X(n+1) −X(n)
)∗
T

)2]
6 Cn

1

∫
0<t1<···<tn<T

E
[((

X(1) −X(0)
)∗
t1

)2]
dt1 · · · dtn

6 Cn
1 E
[((

X(1) −X(0)
)∗
T

)2] · ∫
0<t1<···<tn<T

dt1 · · · dtn

=
Cn

1 T
n

n!
· E
[((

X(1) −X(0)
)∗
T

)2]
.

In addition, Lemma (4.1) together with the linear growth condition (4.5) imply
that

E
[((

X(1) −X(0)
)∗
T

)2]
6 C2

(
1 + E[ξ2]

)
with a suitable constant C2. Therefore,

E
[((

X(n+1) −X(n)
)∗
T

)2]
6
C2C

n
1 T

n

n!

(
1 + E[ξ2]

)
. (4.11)

The right hand side of (4.5) defines a convergent series. As a result,

∞∑
n=0

E
[((

X(n+1) −X(n)
)∗
T

)2]
= E

[ ∞∑
n=0

((
X(n+1) −X(n)

)∗
T

)2]
<∞.

In particular,
∞∑
n=0

((
X(n+1) −X(n)

)∗
T

)2
<∞ a.s.

This implies that with probability one, as continuous functions on [0, T ] the se-
quence {X(n) : n > 0} is a Cauchy sequence under the uniform distance. There-
fore, with probability one X(n) converges uniformly to some continuous process
X. By taking n → ∞ in (4.10), we see that X satisfies the equation (4.3). This
gives the existence part of Theorem 4.1.

Remark 4.3. It is not hard to see that the above argument yields the following
estimate:

E
[(
X∗T
)2]

6 CT,K(1 + E[ξ2]),

where CT,K is constant depending on T and K.
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4.2 Strong Markov property, generator and the martingale
formulation

Consider the following multidimensional SDE{
dXx

t = σ(Xx
t )dBt + b(Xx

t )dt,

Xx
0 = x ∈ Rn

(4.12)

written in matrix form and assume that the conditions of Theorem 4.1 are met.
According to Theorem 4.1, the SDE (4.12) admits a unique solution for all time.
Here we have assumed that the coefficients σ, b do not depend on time. The time-
dependent situation can be reduced to the current case by introducing an extra
(trivial) equation dt = dt and regarding t 7→ (t,Xx

t ) as the solution process.

Definition 4.3. The process X = {Xx
t : x ∈ Rn, t > 0} is called a (time-

homogeneous) Itô diffusion process with diffusion coefficient σ and drift coefficient
b.

Diffusion processes provide a rich and important class of strong Markov pro-
cesses. Recall that a Markov process refreshes at any given deterministic time.
We have defined the Markov property by (2.11) in Section 2.2. Similarly, a strong
Markov process refreshes at any given stopping time. Mathematically, the strong
Markov property is stated as

P(Xτ+t ∈ Γ|Fτ ) = P(Xτ+t ∈ Γ|Xτ )

for any finite {Ft}-stopping time τ , deterministic t > 0 and Γ ∈ B(Rn). Heuris-
tically, the Markov property of the solution {Xx

t } is a simple consequence of
uniqueness: the solution for the future is uniquely determined by the current
location as a refreshed initial condition and forgets the entire past.

Theorem 4.3. Itô diffusion processes are strong Markov processes.

Proof. Let τ be a given finite {Ft}-stopping time. For any t > 0, we have

Xx
τ+t = x+

∫ τ+t

0

σ(Xx
s )dBs +

∫ τ+t

0

b(Xx
s )ds

= Xx
τ +

∫ τ+t

τ

σ(Xx
s )dBs +

∫ τ+t

τ

b(Xx
s )ds

= Xx
τ +

∫ t

0

σ(Xx
τ+u)dB

(τ)
u +

∫ t

0

b(Xx
τ+u)du, (4.13)
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where B(τ)
u , Bτ+u − Bτ . The key observation is that t 7→ Xx

τ+t is the unique
solution to the same SDE driven by the Brownian motion B(τ) with initial con-
dition Xx

τ . To elaborate this, we introduce the function S(t, x, B) to denote the
solution at time t for the SDE driven by B with initial condition x. Then (4.13)
reads

Xx
τ+t = S(t,Xx

τ , B
(τ)).

Since Xx
τ is Fτ -measurable and B(τ) is independent of Fτ by the strong Markov

property of Brownian motion, the conditional distribution of Xx
τ+t given Fτ is

uniquely determined byXx
τ as well as the distribution of Brownian motion through

the function S. This clearly implies the strong Markov property.

In the study of Markov processes, it is often important to consider the analytic
perspective. Let X = {Xx

t } be a given Itô diffusion process on Rn. We use Cb(Rn)
(respectively, C2

b (Rn)) to denote the space of functions on Rn that are bounded
and continuous (respectively, have bounded derivatives up to order two).

Definition 4.4. The transition semigroup of X is the family of linear operators
Pt : Cb(Rn)→ Cb(Rn) (t > 0) defined by

(Ptf)(x) , E[f(Xx
t )], f ∈ Cb(Rn).

The generator of X is the linear operator

Af , lim
t→0

Ptf − f
t

defined for those f ’s for which the above limit exists in Cb(Rn).

Remark 4.4. Suppose that {Xn : n ∈ N} is a Markov chain with countable state
space S and n-step transition probabilities

pn(x, y) = P(Xn = y|X0 = x), x, y ∈ S.

By arranging (pn(x, y))x,y∈S as an |S| × |S| matrix, one obtains a linear transfor-
mation Pn : R|S| → R|S|. Note that functions on S can be identified as (column)
vectors in R|S|. From this perspective, the transition semigroup is a continuous-
time extension of the notion of n-step transition probabilities. As a result, it
encodes all information about the distribution of the Markov process {Xx

t }.
The precise study of semigroups, generators and their relationship relies on

basic tools from Banach spaces. Here we only outline the essential ideas at a
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semi-rigorous level. It is clear that P0f = f. A crucial property of the semigroup
{Pt : t > 0} is that

Ps+t = Ps ◦ Pt (4.14)

as seen from the Markov property:

Pt+sf(x) = E[f(Xx
s+t)] = E

[
E[f(Xx

s+t)|Fs]
]

= E
[
Ptf(Xx

s )
]

= (Ps ◦ Ptf)(x).

On the other hand, by the definition of the generator one has Af = dPt
dt
|t=0. It

follows from the semigroup property (4.14) that

dPt
dt

= lim
s→0+

Ps+t − Pt
s

=
(

lim
s→0+

Ps − Id

s

)
◦ Pt = APt. (4.15)

One can regard (4.15) as a linear ODE for Pt. Its solution is formally given
by Pt = etA. From this viewpoint, it is reasonable to expect that the semigroup
(equivalently, the entire distribution of X) is uniquely determined by its generator
A. This explains why the generator plays an essential role in the study of Markov
processes. The precise reconstruction of the semigroup {Pt} from the generator
A is the content of the Hille-Yosida theorem in functional analysis (cf. [17, Sec.
III.5]).

In the context of Itô diffusions, the generator A can be computed explicitly
by using Itô’s formula.

Proposition 4.1. Let X = {Xx
t } be an Itô diffusion process define by the SDE

(4.12). The generator of X is the second order differential operator given by

(Af)(x) ,
1

2

n∑
i,j=1

aij(x)
∂2f(x)

∂xi∂xj
+

n∑
i=1

bi(x)
∂f(x)

∂xi
, f ∈ C2

b (Rn),

where a(x) is the n × n matrix defined by a(x) = σ(x) · σ(x)T . In addition, for
any given f ∈ C2

b (Rn), the process

M f
t , f(Xx

t )− f(x)−
∫ t

0

(Af)(Xx
s )ds, t > 0

is an {Ft}-martingale.
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Proof. According to Itô’s formula,

f(Xx
t ) = f(x) +

n∑
i=1

∫ t

0

∂f

∂xi
(Xx

s )dBi
s +

n∑
i=1

∫ t

0

∂f

∂xi
(Xx

s )bi(Xs)ds

+
1

2

n∑
i,j=1

∫ t

0

∂2f

∂xi∂xj
(Xx

s )σik(X
x
s )σjk(X

x
s )ds, (4.16)

where we have used the relation

dX i
t · dX

j
t =

( d∑
k=1

σikdB
k
t + bidt

)
×
( d∑
l=1

σildB
l
t + bjdt

)
=

d∑
k=1

σikσ
j
kdt.

Since the stochastic integral in (4.16) is a martingale, one finds that

E[f(Xx
t )] = f(x) +

n∑
i=1

∫ t

0

E
[ ∂f
∂xi

(Xx
s )bi(Xx

s )
]
ds

+
1

2

n∑
i,j=1

∫ t

0

E
[ ∂2f

∂xi∂xj
(Xx

s )σik(X
x
s )σjk(X

x
s )
]
ds.

Now observe that

1

t

∫ t

0

E
[ ∂f
∂xi

(Xx
s )bi(Xx

s )
]
ds→ ∂f(x)

∂xi
bi(x),

1

t

∫ t

0

E
[ ∂2f

∂xi∂xj
(Xx

s )σik(X
x
s )σjk(X

x
s )
]
ds→ ∂2f(x)

∂xi∂xj
σik(x)σjk(x)

as t → 0 (why?). The first assertion of the proposition thus follows from the
definition of the generator. The second assertion is an immediate consequence of
the fact that M f

t is the stochastic integral term in (4.16).

Example 4.4. A d-dimensional Brownian motion can be viewed as the solution
to the trivial SDE dBt = dBt. In particular, σ = Id and b = 0. According
to Proposition 4.1, its generator is 1

2
∆ where ∆ , ∂2

∂x21
+ · · · + ∂2

∂x2d
denotes the

Laplace operator on Rd.

Based on Proposition 4.1, the drift and diffusion coefficients have a simple
interpretation. To simplify notation, we only consider the one-dimensional case.
By the definition of A, one has the following approximation:

(Phf)(x) ≈ f(x) + (Af)(x)h
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when h is small. By taking f(x) = x, one finds that Af(x) = b(x). Therefore,

E[Xt+h −Xt|Xt = x] = (Phf)(x)− f(x) ≈ b(x)h

when h is small. In other words, b(x) is the average “velocity vector” for the
diffusion at position x. Similarly, one also finds that

E[(Xt+h −Xt)
2|Xt = x] ≈ a(x)h.

As a result, starting at position x, in
√
h amount of time the diffusion will travel

a distance of
√
a(x)h = |σ(x)|

√
h on average.

Remark 4.5. In Proposition 4.1, the fact that M f
t is a martingale for any f ∈

C2
b (Rn), which is also known as the martingale formulation of the SDE (4.12),

is of fundamental importance and has far-reaching applications in stochastic cal-
culus as well as PDE theory. Indeed, this property uniquely characterises the
distribution of the solution X. As a result, solving an SDE in a distributional
sense is essentially equivalent to finding a distribution under which the aforemen-
tioned martingale property holds. This is a deep and rich topic in the theory of
weak solutions to SDEs (the martingale problem of Stroock-Varadhan). We refer
the reader to the monograph [20] for a thorough discussion.

4.3 Explicit solutions to linear SDEs

The simplest type of SDE examples are linear equations. In this case, solutions
exist uniquely and can be constructed explicitly. For simplicity, we only consider
the one-dimensional situation. A one-dimensional linear SDE takes the following
general form:

dXt = (A(t)Xt + a(t))dt+ (C(t)Xt + c(t))dBt (4.17)

where A, a, C, c : [0,∞) → R are bounded, deterministic functions. It is plain to
check that the conditions of Theorem 4.1 are satisfied. As a result, there exists a
unique solution to the equation.

To solve the SDE (4.17) explicitly, just like the ODE case the key idea is to
use an appropriate integrating factor to eliminate the linear dependence terms
A(t)Xtdt and C(t)XtdBt. To understand the method better, we first recapture
the ODE situation:

dxt
dt

= A(t)xt + a(t). (4.18)
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In order to solve (4.18), we introduce the integrating factor zt = e
∫ t
0 A(s)ds so that

when differentiating z−1
t xt the linear term A(t)xt is eliminated. More explicitly,

one finds
(z−1
t xt)

′ = z−1
t a(t).

As a result, the solution to the ODE (4.18) is given by

xt = zt
(
x0 +

∫ t

0

z−1
s a(s)ds

)
.

For the SDE (4.17), since there is an extra linear term C(t)XtdBt apart from
A(t)Xtdt, one should naturally add a “stochastic exponential” into the previous
integrating factor zt. Our multiple experience suggests that this stochastic expo-
nential should be given by the exponential martingale

exp
( ∫ t

0

C(s)dBs −
1

2

∫ t

0

C(s)2ds
)
.

As a result, the stochastic integrating factor should be defined by

Zt , exp
( ∫ t

0

A(s)ds+

∫ t

0

C(s)dBs −
1

2

∫ t

0

C(s)2ds
)
.

Now we proceed to check if both linear terms A(t)Xtdt and C(t)XtdBt are elimi-
nated in the process Z−1

t Xt. We first use Itô’s formula to obtain

dZ−1
t = Z−1

t

(
− A(t)dt− C(t)dBt +

1

2
C(t)2dt

)
+

1

2
Z−1
t C(t)2dt.

It then follows from the integration by parts formula that

d(Z−1
t Xt) = (dZ−1

t )Xt + Z−1
t dXt + (dZ−1

t )dXt

= Z−1
t Xt

(
− A(t)dt− C(t)dBt +

1

2
C(t)2dt

)
+

1

2
Z−1
t XtC(t)2dt

+ Z−1
t

(
(A(t)Xt + a(t))dt+ (C(t)Xt + c(t))dBt

)
+ Z−1

t

(
− C(t)dBt

)(
(C(t)Xt + c(t))dBt

)
= Z−1

t

(
(a(t)− C(t)c(t))dt+ c(t)dBt

)
.

By integrating the above equation from 0 to t, we find that the solution to the
SDE (4.17) is given by

Xt = Zt
(
X0 +

∫ t

0

Z−1
s (a(s)− C(s)c(s))ds+

∫ t

0

Z−1
s c(s)dBs

)
. (4.19)
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Example 4.5. Let γ, σ > 0 be given constants. The linear SDE

dXt = −γXtdt+ σdBt

is called the Langevin equation and the solution is known as theOrnstein-Uhlenbeck
process. Its generator is given by

A =
σ2

2

d2

dx2
− γx d

dx
.

According to (4.19),

Xt = X0e
−γt + σ

∫ t

0

e−γ(t−s)dBs.

If X0 is a Gaussian random variable with mean zero and variance η2, then X is a
centered Gaussian process (why?) with covariance function

ρ(s, t) , E[XsXt] = e−γ(s+t)
(
η2 + σ2

∫ s

0

e2γudu
)

=
(
η2 − σ2

2γ

)
e−γ(s+t) +

σ2

2γ
e−γ(t−s), s < t.

In particular, if η2 = σ2/(2γ), then X is also stationary in the sense that the
distribution of (Xt1+h, · · · , Xtn+h) is independent of h for any given n > 1 and
t1 < · · · < tn.

Example 4.6. Consider the SDE

dXt = µXtdt+ σXtdBt

where µ ∈ R and σ > 0 are given constants. The solution is given by

Xt = X0 exp
(
µt+ σBt −

1

2
σ2t
)
.

Its generator is given by

A =
1

2
σ2x2 d

2

dx2
+ µx

d

dx
.

This is known as the geometric Brownian motion. It has important applications
in modelling stock prices.

133



Iterated integrals of Brownian motion: Part II

In Section 3.2.5, we have computed
∫ t

0
BsdBs and

∫ t
0
(
∫ s

0
dBv)dBs. Now we gener-

alise the computation to the case of iterated Itô integrals of arbitrary orders. For
each n > 1, we define

B
(n)
t ,

∫
0<t1<···<tn<t

dBt1 · · · dBtn

,
∫ t

0

( ∫ tn

0

· · ·
( ∫ t3

0

( ∫ t2

0

dBt1

)
dBt2

)
· · · dBtn−1

)
dBtn .

To compute B(n)
t , we again make use of the exponential martingale

Zλ
t , eλBt−λ

2t/2, λ ∈ Rn, t > 0.

The main idea is to represent Zλ
t in the following two different ways.

On the one hand, according to Itô’s formula, Zλ
t satisfies the following linear

SDE
dZλ

t = λZλ
t dBt

with Zλ
0 = 1. The solution to this SDE can be represented in terms of the iterated

integral series:

Zλ
t = 1 + λ

∫ t

0

Zλ
s dBs = 1 + λ

∫ t

0

(
1 + λ

∫ s

0

Zλ
v dBv

)
dBs

= 1 + λ

∫ t

0

dBs + λ2

∫ t

0

( ∫ s

0

Zλ
v dBv

)
dBs

= 1 + λB
(1)
t + λ2

∫ t

0

( ∫ s

0

(
1 + λ

∫ v

0

Zλ
udBu

)
dBv

)
dBs (4.20)

= 1 + λB
(1)
t + λ2B

(2)
t + λ3

∫ t

0

( ∫ s

0

( ∫ v

0

Zλ
udBu

)
dBv

)
dBs

· · ·

=
∞∑
n=0

λnB
(n)
t . (4.21)

On the other hand, let us introduce the function F (x, t) , ext−t
2/2. By viewing

x as a parameter and t as the generic variable, one can write down the Taylor
expansion of F as

F (x, t) =
∞∑
n=0

Hn(x)tn
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where
Hn(x) ,

1

n!

∂F (x, t)

∂t

∣∣
t=0

=
(−1)n

n!
ex

2/2 d
n

dxn
e−x

2/2.

It is not hard to see thatHn(x) is a polynomial of degree n. By explicit calculation,
the first few terms are given by

H0(x) = 1, H1(x) = x, H2(x) =
x2 − 1

2
, H3(x) =

x3 − 3x

6
etc.

Under this notation, we have

F
(Bt√

t
, λ
√
t
)

= Zλ
t =

∞∑
n=0

λnHn

(Bt√
t

)
tn/2. (4.22)

By comparing the coefficients of λn in (4.21) and (4.22), we conclude that

B
(n)
t = Hn

(Bt√
t

)
tn/2, n = 1, 2, 3, · · · .

Remark 4.6. In vague terms, the exponential martingale eBt−t2/2 is the stochas-
tic counterpart of the exponential function ex, and Hn

(
Bt√
t

)
tn/2 is the stochastic

counterpart of the polynomial xn/n!.

Remark 4.7. The polynomial Hn(x) is known as the n-th Hermite polynomial over
R. They can also be obtained by orthogonalising the canonical polynomial system
{1, x, x2, · · · } with respect to the standard Gaussian measure γ(dx) = 1√

2π
e−x

2/2dx

on R. The family {Hn : n > 0} provides the spectral decomposition for the
generator A = d2

dx2
−x d

dx
of the standard Ornstein-Uhlenbeck process (cf. Example

4.5 with γ = 1, σ =
√

2), in the sense that Hn is an eigenfunction of A with
eigenvalue −n (i.e. AHn = −nHn) and {Hn : n > 0} form an orthogonal basis
of L2(R, γ) (the space of square integrable functions with respect to γ). We refer
the reader to [7, Sec. 2] for these details.

4.4 One-dimensional diffusions

In this section, we investigate further properties of one-dimensional SDEs. In
this case, the behaviour of sample paths can be described more explicitly due to
the availability of explicit solutions to suitable second order linear ODEs. The
corresponding picture is less clear in multidimensions where the study is largely
based on PDE methods.
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In what follows, let I = (l, r) ⊆ R be a fixed open interval, where −∞ 6 l <
r 6∞. We consider the following SDE{

dXt = σ(Xt)dBt + b(Xt)dt,

X0 = x ∈ I,

where σ, b are continuously differentiable functions defined on I. In particular, σ, b
are locally Lipschitz since as continuous functions σ′, b′ are bounded on compact
sub-intervals of I. It follows from Theorem 4.2 that there exists a unique solution
Xx = {Xx

t } defined up to its intrinsic explosion time. Here explosion should be
understood as exiting the region I, namely Xt is defined up to the stopping time

ex , inf{t > 0 : Xx
t = l or r}.

When I = (−∞,∞) this is the usual explosion time to infinity. On the event
{ex < ∞}, lim

t↑ex
Xx
t exists and is equal to either l or r. According to Proposition

4.1, the generator of X is the second order differential operator given by

Af =
1

2
σ2f ′′ + bf ′.

From now on, we assume that the diffusion coefficient is everywhere non-vanishing,
i.e. σ2 6= 0 on I. Heuristically, this ensures that Xx

t is “truly diffusive” and it
locally behaves like a Brownian motion.

4.4.1 Exit distribution and behaviour towards explosion

Many basic questions in the study of diffusion processes are related to exit time
distributions. Let [a, b] be a fixed sub-interval of I (a > l and b < r). Suppose
that the starting point x ∈ (a, b) and we define

τx , inf{t > 0 : Xx
t /∈ [a, b]}.

Our first task is to compute E[τx].

Proposition 4.2. Let M(x) (x ∈ [a, b]) be the unique solution to the following
second order linear ODE{

1
2
σ(x)2M ′′(x) + b(x)M ′(x) = −1,

M(a) = M(b) = 0.
(4.23)

Then E[τx] = M(x).
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Proof. Note that the ODE (4.23) is just a restatement of AM = −1. By applying
Itô’s formula to M(Xx

t ) on [0, τx], we have

M(Xx
t ) = M(x) +

∫ t

0

σ(Xx
s )M ′(Xx

s )dBs +

∫ t

0

(AM)(Xx
s )ds

= M(x) +

∫ t

0

σ(Xx
s )M ′(Xx

s )dBs − t, t < τx.

By taking expectation on both sides, we obtain

E
[
M(Xτx∧t)

]
= M(x)− E[τx ∧ t] ∀t > 0.

Since M(Xτx) = 0 by the boundary conditions of M , the result follows by taking
t→∞.

Proposition 4.2 implies that τx < ∞ a.s. As a result, Xx
τx is well-defined and

is equal to either a or b. Using a similar idea as before, one can compute the
distribution of Xτx . For this purpose, we introduce the function

s(x) ,
∫ x

c

exp
(
− 2

∫ y

c

b(z)

σ2(z)
dz
)
dy, x ∈ I,

where c ∈ I is an arbitrary point whose particular choice does not affect any result
in the sequel. The form of s comes from solving the homogeneous ODE As = 0
(one easily checks that s(x) is a particular solution).

Definition 4.5. The function s(x) is known as the scale function of the diffusion
{Xx

t }.

Proposition 4.3. The distribution of Xτx is given by

P(Xτx = a) =
s(b)− s(x)

s(b)− s(a)
, P(Xτx = b) =

s(x)− s(a)

s(b)− s(a)
. (4.24)

Proof. By applying Itô’s formula to s(Xx
t ) on [0, τx], we find

E[s(Xx
τx∧t)] = s(x) ∀t > 0.

By taking t→∞, we obtain

s(x) = E[s(Xx
τx)] = s(a) · P(Xτx = a) + s(b) · P(Xτx = b).

Since
P(Xτx = a) + P(Xτx = b) = 1,

the result follows easily.
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Remark 4.8. It is elementary to solve the boundary value problem (4.23) explicitly.
Represented in a neat way, it can be seen that

M(x) =

∫ b

a

Ga,b(x, y)m(dy).

Here

Ga,b(x, y) ,

(
s(x ∧ y)− s(a)

)(
s(b)− s(x ∨ y)

)
s(b)− s(a)

, x, y ∈ [a, b]

is the so-called Green’s function and

m(dy) ,
2dy

s′(y)σ2(y)
, y ∈ I

is the so-called speed measure of the diffusion.

Remark 4.9. The above analysis extends naturally to multidimensional diffusions.
In this case, the equations AM = −1 and As = 0 are PDEs whose explicit
solutions are rarely available. Nonetheless, one can still use numerical methods
to study their solutions and related exit distributions.

The scale function can also be used to study the behaviour of the diffusion
towards explosion. Note that s(x) is a strictly increasing function on I. We
denote

s(l+) , lim
x↓l

s(x), s(r−) , lim
x↑r

s(x).

Theorem 4.4. (i) Suppose that s(l+) = −∞ and s(r−) =∞. Then with proba-
bility one, we have

ex =∞, lim
t→∞

Xx
t = r, lim

t→∞
Xx
t = l.

(ii) Suppose that s(l+) > −∞ and s(r−) = ∞. Then with probability one, we
have

lim
t↑ex

Xx
t = l, sup

t<ex

Xx
t < r.

A parallel conclusion holds if the behaviours at l and r are switched.
(iii) Suppose that s(l+) and s(r−) are both finite. Then

P
(

lim
t↑ex

Xx
t = l

)
=

s(r−)− s(x)

s(r−)− s(l+)
, P
(

lim
t↑ex

Xx
t = r

)
=

s(x)− s(l+)

s(r−)− s(l+)
.
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Proof. (i) Let [a, b] be an arbitrary sub-interval of I containing the starting point
x. Define τx as before and we shall now write τx as τa,b to emphasise its dependence
on a, b. Since {

Xx
τa,b

= b
}
⊆
{

sup
t<e

Xx
t > b

}
The second identity in (4.24) implies that

s(x)− s(a)

s(b)− s(a)
6 P

(
sup
t<e

Xx
t > b

)
∀a. (4.25)

Since s(l+) = −∞, by taking a ↓ l we find that P
(

supt<eX
x
t > b

)
= 1. As this is

true for all b, by further letting b ↑ r we obtain

P
(

sup
t<e

Xx
t = r

)
= 1.

In a similar way,
s(r−) =∞ =⇒ P

(
inf
t<e

Xx
t = l

)
= 1.

These two properties imply that with probability one, there are two subsequences
of time, along one Xx

t approaches r while along the other Xx
t approaches l. This

rules out the possibility of ex < ∞ since on this event we know that Xx
t is

convergent a.s. when t ↑ ex. The conclusion of Part (i) thus follows.

(ii) We have seen that
Y a,b
t , s(Xx

τa,b∧t)− s(l+)

is a (non-negative) martingale as a consequence of As = 0. In particular,

E
[
s(Xx

τa,b∧t)− s(l+)|Fs
]

= s(Xx
τa,b∧s)− s(l+)

for s < t. Since τa,b ↑ ex as a ↓ l and b ↑ r, Fatou’s lemma implies that

E[s(Xx
ex∧t)− s(l+)|Fs] 6 lim

a↓l,b↑r

(
s(Xx

τa,b∧s)− s(l+)
)

= s(Xx
ex∧s)− s(l+).

As a result, {s(Xx
ex∧t) − s(l+) : t > 0} is a non-negative supermartingale. Note

that a non-negative supermartingale is always bounded in L1. By the martingale
convergence theorem (cf. Theorem 1.3)

lim
t→∞

(
s(Xx

ex∧t)− s(l+)
)
exists a.s.

139



Since s(x) is strictly increasing, we conclude that lim
t↑ex

Xx
t exists a.s. On the other

hand, we have seen in Part (i) that P
(

inf
t<ex

Xx
t = l

)
= 1. As a result,

P
(

lim
t↑ex

Xx
t = l

)
= 1.

This at the same time rules out the possibility of having a subsequence that
converges to r, hence also yielding sup

t<ex

Xx
t < r a.s. The conclusion of Part (ii)

thus follows.

(iii) By first letting a ↓ l and then b ↑ r in (4.25), we have

P
(

sup
t<ex

Xx
t = r

)
>

s(x)− s(l+)

s(r−)− s(l+)
.

Similarly,

P
(

inf
t<ex

Xx
t = l

)
>

s(r−)− s(x)

s(r−)− s(l+)
.

On the other hand, in Part (ii) we have shown that (under the assumption s(l−) >
−∞) limt↑ex X

x
t exists a.s. On this event, we have

sup
t<e

Xx
t = r =⇒ lim

t↑ex
Xx
t = r, inf

t<e
Xx
t = l =⇒ lim

t↑ex
Xx
t = l.

Therefore,

P
(

lim
t↑ex

Xx
t = r

)
>

s(x)− s(l+)

s(r−)− s(l+)
, P
(

lim
t↑ex

Xx
t = l

)
>

s(r−)− s(x)

s(r−)− s(l+)
. (4.26)

Since
s(x)− s(l+)

s(r−)− s(l+)
+

s(r−)− s(x)

s(r−)− s(l+)
= 1,

the two inequalities in (4.26) must both be equalities. The conclusion of Part (iii)
thus follows.

Remark 4.10. Part (i) of Theorem 4.4 gives a simple non-explosion (i.e. e = ∞
a.s.) criterion. Although Part (ii) and (iii) describe the convergence properties at
the boundary points l, r as t ↑ ex, it is not clear if ex <∞ with positive probability
or not in these cases. More precise explosion tests were due to W. Feller (cf. [9,
Sec. VI.3]).

140



4.4.2 Bessel processes

An important class of one-dimensional diffusions are Bessel processes. These are
defined by taking the Euclidean norm of multidimensional Brownian motions. Let
B = {(B1

t , · · · , Bn
t ) : t > 0} be an n-dimensional Brownian motion (starting at

some ξ ∈ Rn). Define
ρt , (B1

t )
2 + · · ·+ (Bn

t )2. (4.27)

Definition 4.6. The process {ρt : t > 0} is called a squared Bessel process and
{Rt ,

√
ρt : t > 0} is called a Bessel process (in dimension n).

There is a useful alternative characterisation of ρt as a one-dimensional diffu-
sion. According to Itô’s formula,

dρt = 2
n∑
i=1

Bi
tdB

i
t + ndt = 2

√
ρt ·

∑n
i=1B

i
tdB

i
t√

ρt
+ ndt.

Let us introduce the process

Wt ,
n∑
i=1

∫ t

0

Bi
s√
ρs
dBi

s.

Lévy’s characterisation theorem suggests that W is a one-dimensional Brownian
motion, as seen from

dWt · dWt =
( n∑
i=1

Bi
tdB

i
t√

ρt

)
·
( n∑
j=1

Bj
t dB

j
t√

ρt

)
=

∑n
i=1(Bi

t)
2

ρt
dt = dt.

Therefore, ρt satisfies the SDE

dρt = 2
√
ρtdWt + ndt.

This is a one-dimensional diffusion on the interval I = (0,∞) which fits into
the setting of the current section. With initial condition ρ0 = x ∈ I, there is a
uniquely well-defined solution up to the exit time ex of I. We write ρxt to keep
track of the initial condition. To have a finer understanding about ex, we define
σx to be the actual explosion time to ∞ and let τ0 be the first time of reaching
0. In particular, ex , τ0 ∧ σx. Since |

√
x| 6 1+|x|

2
, we know from Theorem 4.2

that σx = ∞ a.s. and thus ex = τ0 a.s. Of course this point is trivial from the
definition (4.27) in terms of the Brownian motion. In the one-dimensional case
(n = 1), since the Brownian motion will a.s. visit the origin in finite time, we
know that τ0 <∞ a.s. The following result describes the situation when n > 2.
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Theorem 4.5. For n > 2, we have P(τ0 =∞) = 1. As a result, with probability
one an n-dimensional Brownian motion never return to the origin. In addition,
for n > 3 we have

lim
t→∞

ρxt =∞ a.s. (4.28)

Proof. Since σ(x) = 2
√
x and b(x) = n, the scale function is found to be

s(x) =

∫ x

1

exp
(
−
∫ y

1

2αdz

4z
dy
)

=

∫ x

1

y−n/2dy.

In particular, s(0+) = −∞ when n > 2. In addition,

s(∞)

{
=∞, if n = 2,
<∞, if n > 3.

In the first case, Part (i) of Theorem 4.4 implies that τ0 = ex = ∞ a.s. In the
second case, Part (ii) of Theorem 4.4 implies that with probability one,

inf
t<ex=τ0

ρxt > 0, lim
t↑ex=τ0

ρxt =∞.

As a result, τ0 cannot be finite and at the same time (4.28) follows.

Remark 4.11. Since ρxt is the sum of independent squared Gaussian random vari-
ables, it is straight forward to compute the Laplace transform of ρxt as

E
[
e−λρ

x
t
]

=
1

(1 + 2λt)n/2
e−

λx
(1+2λt) , λ > 0.

The reason for calling Rt ,
√
ρt a Bessel process is that its probability density

function can be found explicitly by inverting the above Laplace transform of ρxt
and the resulting formula is given in terms of the classical Bessel functions. This
can be seen from the viewpoint of Bessel-type ODEs and their Laplace transforms
(cf. [4, Sec. A.5.2]).

Example 4.7. Consider the one-dimensional diffusion

dSt = S2
t dBt, S0 = x > 0.

Define ρt , S−2
t . According to Itô’s formula,

ρt = x−2 + 2

∫ t

0

√
ρsdWs + 3t,
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where Wt , −Bt. In particular, ρt is a three-dimensional squared Bessel process
starting at x−2. From Theorem 4.5, we know that ρt (respectively, St) neither
explodes to infinity (respectively, hits zero) nor hits zero (respectively, explodes
to infinity in finite time). We can write St as

St = ρ
−1/2
t =

1√
X2
t + Y 2

t + Z2
t

= x+

∫ t

0

S2
udBu,

where {(Xt, Yt, Zt)} is a three-dimensional Brownian motion. From this expres-
sion, it is clear that E[St] cannot be constant in t (why?). Therefore, St is an
Itô integral which fails to be a martingale. Another way of looking at the fact
that St is an Itô integral is to observe that the function f(x, y, z) = 1√

x2+y2+z2
is

harmonic on R3 (i.e. ∆f = 0). In general, if f is a harmonic function on Rn and
B is an n-dimensional Brownian motion, f(Bt) is always an Itô integral which is
easily seen from Itô’s formula.

4.5 Connection with partial differential equations

In this section, we explore the relationship between Itô diffusions and PDEs. As
we will see, solutions to a class of elliptic and parabolic PDEs admit stochastic
representations. As an example, we provide a mathematical explanation for the
heat transfer problem discussed in Section 1.1.2.

Consider the following n-dimensional diffusion process:{
dXx

t = σ(Xx
t )dBt + b(Xx

t )dt, t > 0,

Xx
0 = x,

(4.29)

where B is a d-dimensional Brownian motion and the coefficient functions σ, b
satisfy the Lipschitz condition (4.4). This implies existence and uniqueness by
Theorem 4.1 (Lipschitz condition implies linear growth when σ, b does not depend
on time). Recall from Proposition 4.1 that the generator of X is the second order
differential operator

Af(x) =
1

2

n∑
i,j=1

aij(x)
∂2f(x)

∂xi∂xj
+

n∑
i=1

bi(x)
∂f(x)

∂xi
,

where a(x) , σ(x) · σT (x).
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4.5.1 Dirichlet boundary value problems

In PDE theory, one often considers elliptic boundary value problems associated
with the operator A. Let D be a bounded domain in Rn. Let g : D → R1 and
f : ∂D → R1 be continuous functions, where D denotes the closure of D and
∂D denotes its boundary. The so-called (Dirichlet) boundary value problem is
to find a function u ∈ C(D) ∩ C2(D) (continuous on D and twice continuously
differentiable on D) that satisfies the following PDE:{

Au = −g, x ∈ D,
u = f, x ∈ ∂D.

(4.30)

The existence of a solution u is well studied in PDE theory under suitable con-
ditions on the coefficients as well as the boundary ∂D. We are interested in
representing the solution u in terms of the diffusion process {Xx

t }, which also
implies the uniqueness of (4.30).

Theorem 4.6. Suppose that there exists u ∈ C(D) ∩ C2(D) which solves the
boundary value problem (4.30). Let {Xx

t } be the solution to the SDE (4.29).
Suppose further that the exit time

τx , inf{t > 0 : Xx
t /∈ D}

is integrable for every given x ∈ D. Then the PDE solution u is given by

u(x) = E
[
f(Xx

τx) +

∫ τx

0

g(Xx
s )ds

]
. (4.31)

In particular, the solution to the boundary value problem (4.30) is unique in
C(D) ∩ C2(D).

Proof. Fix x ∈ D. According to Itô’s formula and the equation for u, we have

u(Xx
τx∧t) = u(x) +

n∑
i=1

d∑
k=1

∫ τx∧t

0

∂u

∂xi
(Xx

s )σik(X
x
s )dBk

s +

∫ τx∧t

0

(Au)(Xx
s )ds

= u(x) +
n∑
i=1

d∑
k=1

∫ τx∧t

0

∂u

∂xi
(Xx

s )σik(X
x
s )dBk

s −
∫ τx∧t

0

g(Xx
s )ds

The integrability condition E[τx] <∞ ensures that the stochastic integral term is
indeed a martingale (we do not elaborate this technical point here). The result
follows by taking expectation on both sides and sending t→∞.
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It is useful to know when the exit time τx is integrable. Here is a simple
sufficient condition.

Proposition 4.4. Suppose that

inf
x∈D

aii(x) > 0

for some i = 1, · · · , n. Then E[τx] <∞ for every x ∈ D.

Proof. Define
p , inf

x∈D
aii(x), q , sup

x∈D
|b(x)|, r , inf

x∈D
xi.

Let λ > 2q/p be fixed and consider the function

h(x) , −eλxi , x ∈ Rn.

Then one finds

−(Ah)(x) = eλx
i ·
(1

2
λ2aii(x) + λbi(x)

)
>

1

2
λeλr (λp− 2q) =: γ > 0

for every x ∈ D. On the other hand, given each x ∈ D, the process

t 7→ h(Xx
τx∧t)− h(x)−

∫ τx∧t

0

(Ah)(Xx
s )ds

is a martingale (cf. Proposition 4.1). It follows that

E[h(Xx
τx∧t)] = h(x) + E

[ ∫ τx∧t

0

(Ah)(Xx
s )ds

]
6 h(x)− γE[τx ∧ t].

Therefore,

E[τx ∧ t] 6
h(x)− E[h(Xx

τD∧t)]

γ
6

2 supx∈D |h(x)|
γ

.

Since this is true for all t, the result follows by taking t→∞.

Example 4.8. Suppose that n = d, σ = Id, b = 0. Then {Xx
t } is a Brownian

motion starting at x. In this case, A = 1
2
∆. When g = 0, the solution u of the

PDE (4.30) is represented as u(x) = E[f(Xx
τx)]. This completes the discussion of

the heat transfer problem (1.4) introduced in Section 1.1.2.
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4.5.2 Parabolic problems: the Feynman-Kac formula

Next we consider the parabolic situation. Let T > 0 be fixed, and let f : Rn → R,
g : [0,∞) × Rn → R be given continuous functions. We consider the following
so-called Cauchy problem: find a function u ∈ C([0,∞)×Rn)∩C1,2([0,∞)×Rn)
(C1,2 means continuously differentiable in t and twice continuously differentiable
in x) that satisfies {

∂u
∂t

= Au+ g, (t, x) ∈ (0,∞)× Rn,

u(0, x) = f(x), x ∈ Rn.
(4.32)

Here A acts on u by differentiating with respect to the spatial variable. From PDE
theory, under suitable conditions on the coefficients there exists a unique solution
to (4.32). We are again interested in its stochastic representation. Suppose that
the functions f, g satisfy the following polynomial growth condition:

|f(x)| ∨ |g(t, x)| 6 C(1 + |x|µ) ∀t, x (4.33)

with some constants C, µ > 0. Then we have the following renowned Feynman-Kac
formula.

Theorem 4.7. Let u ∈ C([0,∞) × Rn) ∩ C1,2([0,∞) × Rn) be a solution to the
Cauchy problem (4.32) which satisfies the polynomial growth condition:

|u(t, x)| 6 K(1 + |x|λ) ∀t, x (4.34)

with some constants K,λ > 0. Then u admits the following stochastic representa-
tion:

u(t, x) = E
[
f(Xx

t ) +

∫ t

0

g(t− s,Xx
s )ds

]
. (4.35)

In particular, the solution to the Cauchy problem (4.32) is unique in the space of
functions in C([0, T ]× Rn) ∩ C1,2([0, T )× Rn) that satisfy the polynomial growth
condition (4.34).

Proof. The proof is essentially the same as in the elliptic case. Let t > 0 be fixed.
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By applying Itô’s formula to the process s 7→ u(t− s,Xx
s ) (0 6 s 6 t), one finds

f(Xx
t ) = u(t, x)−

∫ t

0

∂tu(t− s,Xx
s )ds+

∑
i,k

∫ t

0

∂xiu(t− s,Xx
s )σik(X

x
s )dBk

s

+

∫ t

0

(Au)(t− s,Xx
s )ds

= u(t, x) +
∑
i,k

∫ t

0

∂xiu(t− s,Xx
s )σik(X

x
s )dBk

s −
∫ t

0

g(t− s,Xx
s )ds.

(4.36)

The result follows from taking expectation on both sides and rearrangement of
terms. The polynomial growth condition for the functions f, g, u can be used to
show that the stochastic integral in (4.36) is indeed a martingale. We omit the
discussion on this technical point.

An immediate consequence of Theorem 4.6 (the elliptic problem) is that

f, g > 0 =⇒ u > 0.

Similar property holds for the Cauchy problem.

Remark 4.12. Although there are neat stochastic representations for PDE solu-
tions, it is in general not efficient to prove existence of solutions in this way. The
reason is that checking regularity properties for the function defined by the rep-
resentation formula often involves a non-trivial amount of technicalities. A main
benefit from these representation formulae is that one can investigate quantitative
properties of the solution from the probabilistic viewpoint. On the applied side,
it also enables one to simulate PDE solutions by using diffusion trajectories (the
Monte-Carlo method) and study their numerical approximations.

To conclude this chapter, we briefly answer the two fundamental questions
raised in the introduction of this chapter. Let X = {Xx

t } be the solution to the
SDE (4.29) where σ is such that a = σ · σT .
Answer to Question 1. From Section 4.2, one knows that X is a Markov process
whose generator is A.
Answer to Question 2. Suppose that the transition density function

p(t, x, y) =
P(Xx

t ∈ dy)

dy
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exists and is sufficiently regular. Since Xx
0 = x, it is clear that p(0, x, y) = δx(y).

According to the Feynman-Kac formula (cf. Theorem 4.7), for any initial condition
f : Rn → R, the function

u(t, x) = E[f(Xx
t )] =

∫
Rn
p(t, x, y)f(y)dy

solves the Cauchy problem

∂u

∂t
= Au, u(0, ·) = f.

Equivalently, one has∫
Rn

∂p

∂t
p(t, x, y)f(y)dy =

∫
Rn
Axp(t, x, y)f(y)dy.

Since this is true for arbitrary f , it must hold true that

∂p

∂t
(t, x, y) = Axp(t, x, y). (4.37)

The above equation is known as Kolmogorov’s backward equation. The term “back-
ward” reflects the fact that the operator Ax is acting on the backward variable x
(the initial position). One needs to use a duality argument to justify the equation
(4.1). Indeed, for fixed x let

ϕ(t, y) , p(t, x, y), (t, x) ∈ [0,∞)× Rn.

The Markov property implies that

ϕ(t+ s, y) =

∫
Rn
ϕ(t, z)p(s, z, y)dz.

According to the backward equation (4.37),

∂ϕ

∂s
(t+ s, y) =

∫
Rn
ϕ(t, z)

∂p

∂s
(s, z, y)dz =

∫
Rn
ϕ(t, z)Azp(s, z, y)dz

=

∫
Rn
A∗zϕ(t, z)p(s, z, y)dz (integration by parts),

where

A∗ : ϕ(·) 7→ 1

2

n∑
i,j=1

∂2

∂xi∂xj
(
aij(·)ϕ(·)

)
−

n∑
i=1

∂

∂xi
(
bi(·)ϕ(·)

)
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is the formal adjoint of operator A. Since p(0, z, y) = δz(y), one obtains that

∂p

∂t
(t, x, y) =

∂ϕ

∂s

∣∣
s=0

(t+ s, y) = A∗yϕ(t, y) = A∗yp(t, x, y).

This equation is known as Kolmogorov’s forward equation as the operator A∗y acts
on the forward variable y (the future position). In the case when p(t, x, y) does not
exist, the probability measure P (t, x, dy) , P (Xx

t ∈ dy) is still the fundamental
solution to the equation (4.1) in the distributional sense.

Remark 4.13. The existence and smoothness of probability density functions is
a rich subject of study that was largely developed by P. Malliavin in the 1970s
(the Malliavin calculus). It was shown by Malliavin that the transition density
p(t, x, y) exists and is smooth in the case when the generator A is a hypoelliptic
operator. This theorem provides a probabilistic approach to a renowned PDE
result of L. Hörmander in the 1970s. We refer the reader to [19] for an elegant
introduction to this subject.
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5 Applications in risk-neutral pricing
In this chapter, we apply the methods of stochastic calculus to an important prob-
lem in mathematical finance: the pricing of derivative securities. To illustrate the
essential ideas, we work with simplified assumptions/settings and do not pursue
full generality. We refer the reader to [18, Chap. 5] for a thorough discussion,
which is also an excellent source of learning mathematical finance.

5.1 Basic concepts

We first introduce the set-up and motivate the basic questions. We consider a
financial market in which there are n + 1 fundamental assets: n stocks (risky
assets) and 1 money market account (risk-free asset).

5.1.1 Stock price model and interest rate process

The price process for the n stocks are assumed to satisfy the following system of
SDEs:

dSit = αi(t)Sitdt+ Sit ·
d∑
j=1

σij(t)dB
j
t , i = 1, · · · , n. (5.1)

Here B = {(B1
t , · · · , Bd

t ) : 0 6 t 6 T} is a d-dimensional Brownian motion
defined on a given fixed filtered probability space (Ω,F ,P; {Ft : 0 6 t 6 T}).
The coefficients {αi(t), σij(t)} are given progressively measurable processes. The
intuition behind this equation is that the relative change of stock price dSit

Sit
is

governed by two factors: a mean rate of return factor αi(t)dt and a random
force

∑
j σ

i
j(t)dB

j
t . Throughout the discussion, we assume that all the relevant

integrands satisfy the stronger integrability condition (3.20) so that the stochastic
integrals are martingales.

We make one more essential assumption: the underlying filtration is generated
by the Brownian motion B. Heuristically, the role of B accounts for the intrinsic
randomness of the market arising from the interactions among millions of indi-
vidual actions. As a result, this filtration assumption means that there are no
additional information/randomness other than the one intrinsically carried by the
market itself.

For the money market account, we assume that the interest rate process is
described by a given progressively measurable process R = {Rt : 0 6 t 6 T} and
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we define the following discount process

Dt , e−
∫ t
0 Rsds, 0 6 t 6 T.

Mathematically, $1 at time t is equivalent to $Dt at time 0. Note that Dt satisfies
the ODE

dDt = −RtDtdt, D0 = 1.

By using integration by parts, one easily finds that the discounted stock price
process satisfies

d(DtS
i
t) = DtdS

i
t + SitdDt + dDt · dSit

= DtS
i
t

(
(αi(t)−Rt)dt+

d∑
j=1

σij(t)dB
j
t

)
. (5.2)

5.1.2 Portfolio process and value of portfolio

Consider an agent with initial capital X0 and she is managing a portfolio that
consists of the n stocks and the money market account. Suppose that at time
t the agent holds ∆i

t shares of stock i (i = 1, · · · , n) and she borrows or invests
money with interest rate Rt to finance this position. Let Xt denote the value of
this portfolio at time t. The infinitesimal change of Xt must therefore satisfy

dXt =
n∑
i=1

∆i
tdS

i
t +
(
Xt −

n∑
i=1

∆i
tS

i
t

)
Rtdt (5.3)

= RtXtdt+
n∑
i=1

∆i
tS

i
t

(
(αi(t)−Rt)dt+

d∑
j=1

σij(t)dB
j
t

)
= RtXtdt+

n∑
i=1

∆i
t

Dt

d
(
DtS

i
t

)
,

where the last identity follows from the equation (5.2). As a result, the discounted
portfolio value satisfies

d
(
DtXt

)
= DtdXt −RtDtXtdt =

n∑
i=1

∆i
td
(
DtS

i
t

)
. (5.4)

Definition 5.1. The process ∆ = {∆t : 0 6 t 6 T} is called the portfolio process.
Respectively, the process X = {Xt : 0 6 t 6 T} is called the portfolio value
process.
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Remark 5.1. The initial capital X0 and portfolio process ∆ can be decided at
the agent’s wish. However, the portfolio value process X is uniquely determined
through the SDE (5.3). How to select a portfolio dynamically (i.e. deciding ∆) is
an important question of study.

5.1.3 Risk-neutral measure and hedging

The goal of this chapter is to understand the pricing of derivative security. We
must first give its definition.

Definition 5.2. A derivative security with maturity T > 0 is an asset whose
payoff at time T is given by an FT -measurable random variable VT . If an agent
has a long position on a derivative security, the agent owns the security so that
she will receive a payoff of amount VT at the time T of maturity. Respectively,
having a short position on the security means that the agent is obliged to pay
someone an amount of VT at maturity time T.

Example 5.1. A European call option on Stock X with strike price K and matu-
rity T is a derivative security with payoff VT = max{ST −K, 0} at time T, where
ST is the price of the stock at maturity. This option gives its owner the right to
purchase the stock with the fixed price K at time T, hence avoiding the risk of
price increase above K. Indeed, if ST > K, the buyer profits ST −K by exercising
the option. If ST 6 K, the buyer does not exercise the option as she can get the
stock with a cheaper market price in this case. This explains the definition of the
payoff VT for a European call option. Similarly, a European put option on Stock
X with strike price K and maturity T has payoff VT , max{K − ST , 0} at time
T . It gives its owner the right to sell the stock at the fixed price K at time T.

Here comes a fundamental question in pricing theory.

Question: Suppose that a derivative security has payoff VT at time T (maturity).
What should its price be at the initial time and more generally at any given time
t < T? E.g. how much do you need to pay today in order to have the right to
buy a share of Google at $2300 in a month from now (European call option)?

To answer this question, we need to introduce two essential concepts: risk-
neutral measure and hedging strategy.

Definition 5.3. A probability measure P̃ on FBT is called a risk-neutral measure
if it satisfies the following two properties:
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(i) P̃ is equivalent to P, i.e. P(A) = 0 ⇐⇒ P̃(A) = 0 for any A ∈ FBT ;
(ii) under P̃, the discounted stock price process {DtS

i
t} is a martingale for every

i = 1, 2, · · · , n.

Heuristically, the existence of a risk-neutral measure P̃ suggests that the mar-
ket is fair and there is no opportunity of earning free money by trading stocks (no
arbitrage). This point can be made mathematically precise.

Definition 5.4. An arbitrage is a portfolio such that

X0 = 0, P(XT > 0) = 1, P(XT > 0) > 0.

Theorem 5.1 (The first fundamental theorem of asset pricing). Suppose that a
risk-neutral measure P̃ exists. Then there is no arbitrage opportunities.

Proof. Let X = {Xt : 0 6 t 6 T} be an arbitrary portfolio value process (associ-
ated with a given portfolio ∆) such that X0 = 0 and XT > 0 a.s. Since {DtS

i
t} is

a martingale under P̃ for each i, so is the discounted value process {DtXt} as a
consequence of the equation (5.4). In particular

Ẽ[DTXT ] = X0 = 0.

Since DT > 0 and XT > 0 a.s., one concludes that X̃T = 0 a.s. under P̃. By the
equivalence between P̃ and P, one also has X̃T = 0 a.s. under P. Therefore, X
cannot be an arbitrage.

Now consider an agent who holds a short position of the derivative security, i.e.
she sells the security at the initial time and is subject to paying VT to the buyer
at time T . The agent may hedge her position by trading stocks continuously in
time.

Definition 5.5. A hedge of a short position on the derivative security VT is a
choice of the initial capital X0 and a suitable portfolio process ∆ such that the
terminal value of the portfolio is exactly VT (i.e. XT = VT ).

The pricing mechanism for a derivative security relies on the existence of risk-
neutral measure and the availability of hedging strategy. Suppose that a hedge of
the agent’s short position on VT exists and let us denote the associated portfolio
value process as V = {Vt : 0 6 t 6 T}. If a risk-neutral measure P̃ exists, as
in the proof of Theorem 5.1 the discounted value process {DtVt} is a martingale
under P̃. Since VT is the payoff of the security at time T, the martingale property
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suggests that DtVt is “equivalent” to DTVT in a probabilistic sense and should
thus be considered as the discounted time-t price of the derivative security. Since

DtVt = Ẽ
[
DTVT |Ft

]
,

one finds that
Vt =

1

Dt

Ẽ
[
DTVT |Ft

]
= Ẽ

[
e−

∫ T
t RsdsVT |Ft

]
. (5.5)

In particular,
V0 = Ẽ[e−

∫ T
0 RsdsVT ] (5.6)

as FB0 is trivial.
It is not hard to see why V0 given by (5.6) has to be the true price of the

security at time 0. Suppose that the market price V ′0 does not coincide with V0,
say V ′0 > V0. A person who owns the security will then sell it to the market at
time 0, and she is obliged to pay VT to the buyer at time T . In the meanwhile,
she can use an initial capital V0 and hedging strategy ∆ to create a portfolio.
The terminal value of this portfolio is precisely VT (by the definition of hedge),
which covers her payment to the buyer. In this way, the person gains V ′0 −V0 > 0
without any cost. The case when V ′0 < V0 also leads to a free lunch. The liquidity
and effectiveness of the market will eliminate all such arbitrage opportunities. As
a result, the market price of the security will be adjusted to its theoretical value
V0.

Equation (5.5) is the pricing formula for the derivative security with payoff
VT at maturity T . Our derivation of this formula is based on two assumptions:

(i) A risk-neutral measure P̃ exists;
(ii) the derivative security can be hedged.

Remark 5.2. The pricing formula shows that if a hedge ∆ exists its associated
value process must be given by (5.5). At first glance, the existence of a hedge ∆
seems to be irrelevant and does not come into the formula (5.5). However, this
assumption is used when obtaining the martingale property of {DtVt}, as seen
from equation (5.4) which involves ∆ explicitly.

To yield a satisfactory theory, the following two questions need to be answered:

Question 1 : When does a risk-neutral measure exist?
Question 2 : Can a derivative security always be hedged?

As we will see, the first question can be studied by using Girsanov’s transfor-
mation theorem. For the second question, it turns out that the existence of hedge
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is equivalent to the uniqueness of the risk-neutral measure. This is the content of
the second fundamental theorem of asset pricing, which will be discussed in Sec-
tion 5.3 below. Such a theorem is reasonable as the non-uniqueness of risk-neutral
measures would make the pricing formula (5.5) ill-defined.

5.2 The Black-Scholes-Merton formula

To understand the two questions posted at the end of the last section, we first
consider the case when n = 1 (there is only one stock in the market). More
specifically, the stock price process is described by

dSt = αtStdt+ σtStdBt (5.7)

where {Bt : 0 6 t 6 T} is now a one-dimensional Brownian motion. We assume
that the coefficient σt 6= 0 for every t so that St is “truly diffusive”. In this case,
the aforementioned two questions can be answered affirmatively:

(i) a risk-neutral measure always exists and can be found explicitly as a conse-
quence of Girsanov’s theorem;
(ii) hedging strategies always exist as a consequence of the martingale represen-
tation theorem.

In addition, in the situation when the coefficients αt, σt are deterministic con-
stants, one can explicitly write down the pricing formula for European options on
the stock. This is the content of the renowned Black-Scholes-Merton formula.

5.2.1 Construction of the risk-neutral measure

We want to find an equivalent probability measure P̃ under which the discounted
stock price process {DtSt} is a martingale. To this end, in view of (5.2) one can
write

d(DtSt) = σt(DtSt) ·
(
θtdt+ dBt

)
(5.8)

where the process θt , αt−Rt
σt

is called the market price of risk. The idea of
constructing P̃ is very simple: we want the process

B̃t , Bt +

∫ t

0

θsds

to be a Brownian motion under P̃ so that {DtSt} is a martingale as a stochastic
integral against {B̃t}. This is exactly the content of Girsanov’s theorem (3.10).
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Namely, let us define the exponential martingale

Zt , exp
(
−
∫ t

0

θsdBs −
1

2

∫ t

0

θ2
sds
)
,

and introduce a new probability measure

P̃(A) , E
[
1AZT

]
, A ∈ FBT . (5.9)

According to Girsanov’s theorem, {B̃t} is a Brownian motion under P̃. As a result,
{DtSt} is a P̃-martingale. This proves the existence of a risk-neutral measure in
the current context.

Simple algebra shows that under P̃,

dSt = RtStdt+ σtStdB̃t. (5.10)

In other words, the mean rate of return for the stock is changed to the interest rate
Rt under the new measure P̃. As a result, under the risk-neutral measure trading
stocks is essentially equivalent to trading in the money bank account. This is also
consistent with the first fundamental theorem of asset pricing which asserts that
there is no arbitrary opportunities.

5.2.2 Completeness of market model and construction of hedging strate-
gies

To study hedging strategies, we first give the following definition.

Definition 5.6. The market model (5.1) is said to be complete if any derivative
security with an FBT -measurable payoff VT at maturity T can be hedged.

Consider a derivative security with payoff VT at maturity. The following result
is crucial for constructing a hedge of VT . Recall that P̃ is the risk-neutral measure
defined by (5.9).

Lemma 5.1. Let M̃ = {M̃t : 0 6 t 6 T} be a martingale under P̃. Then there
exists a progressively measurable process Γ = {Γt : 0 6 t 6 T} such that

M̃t = M̃0 +

∫ t

0

ΓsdB̃s.
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Proof. This is not an immediate application of the martingale representation the-
orem, as the filtration is generated by B rather than B̃ even though B̃ is a P̃-
Brownian motion. But one can deal with this issue easily. Indeed, from Proposi-
tion 3.8 we know that

Mt , M̃t −
∫ t

0

θsd〈M̃, B̃〉s

is a martingale under P. Here one regards P̃ as the old measure, B̃ as the old
Brownian motion and the original measure

dP = exp
( ∫ T

0

θtdB̃t −
1

2

∫ T

0

θ2
t dt
)
dP̃

as the new measure. Note that the transformed Brownian motion under P is
precisely the original B. According to the martingale representation theorem (cf.
Theorem 3.6) under P, one has

Mt = M0 +

∫ t

0

ΓsdBs

for some Γ = {Γt : 0 6 t 6 T}. It follows that

d〈M,B〉t = dMt · dBt = Γtdt.

Since
〈M̃, B̃〉P̃ = 〈M,B〉P,

one obtains that

M̃t = Mt +

∫ t

0

θsd〈M̃, B̃〉s = Mt +

∫ t

0

θsd〈M,B〉s

= M0 +

∫ t

0

ΓsdBs +

∫ t

0

Γsθsds

= M̃0 +

∫ t

0

ΓsdB̃s.

Now consider a derivative security with payoff VT at maturity T . We define Vt
by the pricing formula (5.5). Then the process {DtVt} is a martingale under P̃.
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As a consequence of Lemma 5.1, there exists a progressively measurable process
{Γt} such that

DtVt = V0 +

∫ t

0

ΓsdB̃s. (5.11)

On the other hand, equations (5.4) and (5.8) imply that

d(DtVt) = ∆tσtDtStdB̃t. (5.12)

By comparing (5.11) and (5.12), we find that

Γt = ∆tσtDtSt. (5.13)

Therefore, the hedge strategy is given by

∆t =
Γt

σtDtSt
.

This proves the existence of a hedge for the security derivative VT . By definition,
we conclude that the one-dimensional market model (5.7) is complete.

5.2.3 Derivation of the Black-Scholes-Merton formula

We now consider the simplest situation where the coefficients of the stock model
(5.7) and the interest rate process are all deterministic constants, say

αt ≡ α ∈ R, σt ≡ σ 6= 0, Rt ≡ r > 0.

Consider an European call option with strike price K at maturity T (cf. Example
5.1). By definition, its payoff at time T is given by VT = (ST − K)+ (x+ ,
max{x, 0}). We are going to derive an explicit formula for its price Vt at each
t < T.

First of all, by solving the equation (5.10) under P̃ in this case, one finds that
(cf. Example 4.6)

St = exp
(
σB̃t +

(
r − 1

2
σ2
)
t
)
.

In particular,

ST = St · exp
(
σ
√
τY +

(
r − 1

2
σ2
)
τ
)

(5.14)

where we have set τ , T − t (the time to maturity) and

Y ,
B̃T − B̃t√
T − t

∼ N(0, 1).
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According to the pricing formula (5.5),

Vt = Ẽ
[
e−r(T−t)(ST −K)+|Ft

]
. (5.15)

In view of (5.14), ST consists of two parts: the current price St ∈ Ft and the
standard normal random variable Y that is independent of Ft. As a result, the
conditional expectation (5.15) can be evaluated explicitly as

Vt = c(t, St),

where the function c(t, x) is defined by the formula

c(t, x) , Ẽ
[
e−rτ

(
x · exp

(
σ
√
τY +

(
r − 1

2
σ2
)
τ
)
−K

)+]
=

1√
2π

∫ ∞
−∞

e−rτ
(
x · exp

(
− σ
√
τy +

(
r − 1

2
σ2
)
τ
)
−K

)+
e−y

2/2dy.

Note that x · exp
(
− σ
√
τy +

(
r − 1

2
σ2
)
τ
)
> K if and only if

y < d−(τ, x) ,
1

σ
√
τ

(
log

x

K
+
(
r − 1

2
σ2
)
τ
)
.

Therefore,

c(t, x) =
1√
2π

∫ d−(τ,x)

−∞
xe−y

2/2−σ
√
τy−σ2τ/2dy − 1√

2π

∫ d−(τ,x)

−∞
e−rτKe−y

2/2dy

= xΦ(d+(τ, x))−Ke−rτΦ(d−(τ, x)),

where
d+(τ, x) , d−(τ, x) + σ

√
τ =

1

σ
√
τ

(
log

x

K
+
(
r +

1

2
σ2
)
τ
)

and Φ is the cumulative distribution function of N(0, 1). To summarise, we have
obtained the following Black-Scholes-Merton option pricing formula for European
call options.

Theorem 5.2. The price of a European call option with strike price K and time
to maturity τ = T − t is given by

Vt = St · Φ(d+(τ, St))− e−rτKΦ(d−(τ, St)),

where St is the price of the stock at the current time t.

Remark 5.3. European put options are priced in a similar way and a parallel
explicit formula is also available. We omit the discussion on this case.
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5.3 The second fundamental theorem of asset pricing

The generalisation of the previous calculations to the case with n stocks is almost
straight forward with two major exceptions:

(i) a risk-neutral measure needs not always exist;
(ii) the market model needs not always be complete (hedge may not always be
possible).

To see this, we first recall that the discounted stock price process {DtS
i
t : i =

1, · · · , n} satisfies the SDE (5.2). Let us introduce the following linear algebraic
system

αi(t)−Rt =
d∑
j=1

σij(t)θ
j
t , i = 1, · · · , n,

with unknowns θ = {θjt : j = 1, · · · , d}. In matrix notation,

αt −Rt = σt · θt, (5.16)

where αt, θt are written as column vectors, Rt , (Rt, · · · , Rt)
T and σt is the

matrix σij(t) being its (i, j)-entry. The system (5.16) is called the market price of
risk equation. If the system is solvable (not always true though!), one can rewrite
the SDE (5.2) as

d
(
DtS

i
t

)
= DtS

i
t ·
( d∑
j=1

σij(t) · (θ
j
tdt+ dBj

t )
)
.

Starting from this, one can apply the change of measure associated with the
exponential martingale

Zt , exp
(
−

d∑
j=1

∫ t

0

θjsdB
j
s −

1

2

d∑
j=1

∫ t

0

(
θjs
)2
ds
)
.

Along the same lines as in the one-dimensional case, the following result can be
established easily.

Theorem 5.3. Suppose that the market price of risk equation (5.16) is solvable.
Then there exists a risk-neutral measure P̃ and thus no arbitrage opportunities are
available. In addition, {DtXt} is a P̃-martingale for any portfolio value process
{Xt}.
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In general, it can be proved that if the market price of risk equation fails to be
solvable, there will be arbitrage opportunities in the market. As a consequence,
the following three statements are equivalent:

(i) the market price of risk equation is solvable;
(ii) there exists a risk-neutral measure;
(iii) there is no arbitrage.

We only use an example to illustrate this point. The general proof of “(iii) =⇒ (i)”
is contained in [3, Sec. 6.2].

Example 5.2. Suppose that n = 2, d = 1 and the processes αi(t), σij(t), Rt are
deterministic constants. In this case, the market price of risk equation becomes{

α1 − r = σ1 · θ,
α2 − r = σ2 · θ.

This system is solvable if and only if

α1 − r
σ1

=
α2 − r
σ2

.

Suppose that

µ ,
α1 − r
σ1

− α2 − r
σ2

> 0.

We consider the portfolio process ∆ = {(∆1
t ,∆

2
t )} defined by

∆1
t =

1

S1
t σ

1
, ∆2

t , −
1

S2
t σ

2
.

Direct calculation shows that

d(DtXt) = Dt(dXt − rXtdt) = µDtdt

in this case. Since µ,Dt > 0, this implies that the discounted process {DtXt} is
strictly increasing. In other words, one can earn faster than the interest rate for
sure and this leads to an arbitrage opportunity.

Next, we consider a derivative security with payoff VT at maturity T. In
a similar way, the parallel equation of (5.13) for the hedging strategy ∆ =
{(∆1

t , · · · ,∆n
t )} is given by

Γjt =
n∑
i=1

Dt∆
i
tS

i
tσ

i
j(t), (5.17)
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where Γ is now a d-dimensional process such that

DtVt = V0 +
d∑
j=1

∫ t

0

ΓjsdB̃
j
s . (B̃j

t , Bj
t +

∫ t

0

θjsds)

In matrix notation, the algebraic system (5.17) is expressed as

Γt = σTt · (DS∆)t,

where Γt, (DS∆)t are written as column vectors and (DS∆)it , DtS
i
t∆

i
t. The

system (5.17) is called the hedging equation. This system need not always be
solvable. If it is solvable for every given VT , a hedging strategy always exists and
by definition the market model is complete. As seen by the following result, this
is essentially related to the uniqueness of risk-neutral measures. We only sketch
the proof and refer the reader to [18, Sec. 5.4.4] for the complete details.

Theorem 5.4 (The second fundamental theorem of asset pricing). Suppose that
the market price of risk equation (5.16) is solvable so that a risk-neutral measure
exists. Then the market model is complete if and only if there is a unique risk-
neutral measure.

Sketch of proof. Sufficiency. The uniqueness of risk-neutral measures implies that
the coefficient matrix σt for the system (5.16) is injective (i.e. defining an injective
linear transform from Rd into Rn). For if it were not the case, there will be more
than one solutions to the system (5.16), leading to different risk-neutral measures
which is a contradiction. But from linear algebra, we know that the injectivity of
σt is equivalent to the surjectivity of σTt , and the latter is merely a restatement of
the solvability for the hedging equation (5.17) for every given Γ.

Necessity. Suppose that the market model is complete. Let P̃1 and P̃2 be two
risk-neutral measures. Consider a derivative security whose payoff is VT = 1

DT
1A

where A ∈ FBT is given fixed. By the assumption, there exists a hedge of VT whose
associated portfolio value process is denote as {Vt}. Since {DtVt} is a martingale
under both P̃1 and P̃2, one finds that

P̃1(A) = Ẽ1[DTVT ] = V0 = Ẽ2[DTVT ] = P̃2(A).

Therefore, P̃1 = P̃2.
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6 List of exercises
This chapter is a vital part of the course. It contains a total of 50 carefully
chosen exercises that are intimately related to materials in the main text. With
only a few exceptions, most of the problems can be solved without the need
of knowing deeper tools from stochastic calculus that are not covered at the cur-
rent introductory level (e.g. measure-theoretic techniques, localisation techniques,
topological/functional-analytic considerations). To keep abstract contents at a
minimum level, many problems are put on concrete settings and involve explicit
analysis. However, almost none of the problems are routine and most of them
require deeper thinking but are certainly reachable for one who understands the
main text well.

I must admit that many of these problems are by no mean my original in-
vention. Some of them (or their variants) are so fundamental and inspiring that
they have been included in many classical texts. The origins of those not-so-
standard/classical ones have been provided to the best of my knowledge. I am
deeply indebted to many great probabilists (K. Chung, W. Feller, N. Ikeda, K.
Itô, F. Le Gall, H. McKean, D. Revuz, L. Rogers, D. Stroock, S. Varadhan, S.
Watanabe, D. Williams, M. Yor among others), from whom I learned the elegant
theories and gained the tremendous joy of solving puzzles back to my own student
time. It is now the time for you to have fun!

Exercise 6.1. Let X, Y be random variables defined on a probability space
(Ω,F ,P) and let G be a sub-σ-algebra of F . All relevant expectations are as-
sumed to exist.

(i) Show that E[XE[Y |G]] = E[Y E[X|G]].
(ii) Let f : R2 → R be a Borel measurable function. Suppose that X is G-
measurable, and Y,G are independent. Show that

E[f(X, Y )|G] = ϕ(X),

where ϕ(x) , E[f(x, Y )] for x ∈ R.
(iii) Suppose that σ(σ(X),G) and H are independent. Show that

E[X|σ(G,H)] = E[X|G].

(iv) Let X, Y be random variables that satisfy

E[X|Y ] = Y, E[Y |X] = X a.s.

Show that P(X = Y ) = 1.
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Exercise 6.2. (Galmarino, 1963) Let W be the space of continuous paths w :
[0,∞) → R. The coordinate process X = {Xt : t > 0} on W is defined by
Xt(w) , wt. Let B(W) , σ(Xt : t > 0) and let {FXt : t > 0} be the natural
filtration of X.

(i) Given t > 0, define G to be the class of subsets A ∈ B(W) that satisfy the
following property: for any w,w′ ∈ W , if w ∈ A and ws = w′s for all s ∈ [0, t],
then w′ ∈ A. Show that G = FXt .
(ii) Let τ : W → [0,∞] be a B(W)-measurable map. Show that τ is an {FXt }-
stopping time if and only if the following property holds: for any w,w′ ∈ W with
w = w′ on [0, τ(w)] ∩ [0,∞), one has τ(w′) = τ(w).
(iii) Let τ be an {FXt }-stopping time and let A ∈ B(W). Show that A ∈ FXτ if
and only if for every w ∈ W , w ∈ A ⇐⇒ wτ(w) ∈ A, where wτ(w) is the stopped
path defined by wτ(w)

t , wτ(w)∧t (t > 0).
(iv) Let τ be an {FXt }-stopping time. By using the previous parts, show that
FXτ = σ(Xτ∧t : t > 0).

Exercise 6.3. A sequence of integrable random variables {Xn : n > 0} is said to
be uniformly integrable, if

lim
λ→∞

sup
n>0

E
[
|Xn|1{|Xn|>λ}

]
= 0.

(i) Suppose that there exists a constant M > 0 such that E[X2
n] 6 M for all n.

Show that {Xn} is uniformly integrable.
(ii) Let {Xn} be a uniformly integrable sequence such that Xn → X a.s. for some
random variable X. Show that X is integrable and Xn converges to X in L1.
(iii) LetX be an integrable random variable and let {Fn} be a given filtration. De-
fine Xn , E[X|Fn]. Show that {Xn} is a uniformly integrable, {Fn}-martingale.
Deduce that Xn converges to some random variable Y both a.s. and in L1. How
do you describe Y ?
(iv) Let Xn and X be random variables such that Xn → X a.s. Suppose that
there exists a non-negative, integrable random variable Y with |Xn| 6 Y for all
n. Let {Fn} be an arbitrarily given filtration and set F∞ , σ(∪nFn). Show that
E[Xn|Fn] converges to E[X|F∞] a.s. and in L1.

Exercise 6.4. At the initial time n = 0, an urn contains b black balls and w white
balls. At each time n > 1, a ball is chosen from the urn uniformly at random
and it is returned to the urn along with a new ball of the same colour. Let Bn
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(respectively, Mn) denote the number of black balls (respectively, the proportion
of black balls) in the urn right after time n.

(i) Show that

P
(
k black balls in the first n selection

)
=

(
n

k

)
β(b+ k, w + n− k)

β(b, w)
,

where β(x, y) denotes the Beta function.
(ii) Show that {Mn : n > 0} is a martingale with respect to its natural filtration.
(iii) Show that Mn is convergent both a.s. and in L1.
(iv) By using the characteristic function or otherwise, show that the limiting
distribution of Mn is the Beta distribution with parameters b, w.

Exercise 6.5. Tom and Jerry are gambling with each other. Their initial capitals
at time n = 0 are a and b respectively, where a, b are given positive integers.
At each round n > 1, either Tom wins one dollar from Jerry or the otherwise.
Suppose that Tom’s winning probability at each round is p ∈ (0, 1) and assume
that p 6= 1/2. All rounds are assumed to be independent. The game is finished
if either one of them goes bankrupt. Let τ be the time that the game is finished
and let γ be the probability that Tom first goes bankrupt.

(i) Let {Xn : n > 1} be an i.i.d. sequence such that

P(Xn = 1) = p, P(Xn = −1) = 1− p.

Define Sn , X1 + · · ·+Xn where S0 , a. Find two real numbers α, β, such that

Mn , αSn , Nn , Sn − βn

are martingales with respect to their natural filtrations.
(ii) Use the result of Part (i) to compute γ and E[τ ].
(iii) Solve Part (ii) again under the assumption that p = 1/2.

Exercise 6.6. This problem provides an enlightening method of simulating the
number e. Let {Xn : n > 1} be an i.i.d. sequence of uniform random variables over
[0, 1]. Define S0 , 0 and Sn , X1 + · · ·+Xn for n > 1. Let τ , inf{n : Sn > 1}.
(i) Let f : [0, 2]→ R be a function such that

f(x) =

∫ 1

0

f(x+ t)dt+ 1 ∀x ∈ [0, 1]. (6.1)

165



Show that {f(Sτ∧n) + τ ∧ n : n > 0} is a martingale with respect to the natural
filtration of {Sn}.
(ii) Use the result of Part (i) to show that e = E[τ ].

Exercise 6.7. (Lyons-Caruana-Lévy, 2004) Consider the probability space
([0, 1],B([0, 1]), dt) where dt is the Lebesgue measure.

(i) Let P : 0 = t0 < t1 < · · · < tn = 1 be a finite partition of [0, 1] and define

FP , σ
({

[tk−1, tk] : k = 1, · · · , n
})
.

Compute E[ϕ|FP ] for any given integrable function ϕ : [0, 1]→ R.
(ii) Let γ : [0, 1]→ R be an absolutely continuous function and define

‖γ‖1-var , sup
P

∑
ti∈P

|γ(ti)− γ(ti−1)| <∞,

where the supremum is taken over all finite partitions of [0, 1]. For each n > 1,
let Pn = {k/2n}2n

k=0 be the n-th dyadic partition of [0, 1]. Define γn : [0, 1]→ R to
be the linear interpolation of γ over Pn, i.e. γn = γ on the partition points and
γn is linear on each sub-interval [(k − 1)/2n, k/2n]. Show that {γ′n : n > 1} is a
martingale on ([0, 1],B([0, 1]), dt) with respect to a suitable filtration.
(iii) By using the martingale convergence theorem, show that

lim
n→∞

‖γn − γ‖1-var = 0.

Exercise 6.8. (Stroock, 2005) The aim of this problem is to study recur-
rence/transience of Markov chains by using martingale methods. Let X = {Xn :
n > 0} be a Markov chain with a countable state space S and one-step transition
matrix P = (Pij)i,j∈S. A function f : S → R is said to be P -superharmonic if

(Pf)(i) ,
∑
j∈S

Pijf(j) 6 f(i)

for all i ∈ S, provided that Pf is well defined.
(i) Let f : S → [0,∞) be a given function. Define

Y f
n , f(Xn)− f(X0)−

n−1∑
k=0

(Pf − f)(Xk), Y
f

0 , 0.
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Show that {Y f
n } is a martingale with respect to the natural filtration of X. Con-

clude that

f is P -superharmonic =⇒ {f(Xn)} is a supermartingale.

(ii) Let F ⊆ S. Define τ , inf{n > 1 : Xn ∈ F}. Let f : S → [0,∞) be
P -superharmonic outside F . Show that

E
[
f(Xτ∧n)|X0 = i

]
6 f(i) ∀i ∈ F c, n > 0.

(iii) Suppose that X is irreducible. If X is recurrent, show that any non-negative
P -superharmonic function must be constant. Conversely, if X is transient, for
each fixed j ∈ S show that the function

S 3 i 7→ G(i, j) ,
∞∑
n=0

P n
ij (P n

ij , P(Xn = j|X0 = i))

is P -superharmonic and non-constant. Conclude that X is recurrent if and only
if all non-negative P -superharmonic functions are constant.
(iv) Let j ∈ S be a fixed state. Let {Bm : m > 1} be an increasing family of
non-empty subsets of S such that j ∈ B0 and for each m, with probability one X
(starting at j) exits Bm in finite time. Suppose that there exists f : S → [0,∞)
which is P -superharmonic on {j}c and

am , inf
i/∈Bm

f(i)→∞ as m→∞.

By using the result of Part (ii), show that

f(j) > amP(τm 6 ρj|X0 = j) ∀m > 1,

where τm , inf{n > 1 : Xn /∈ Bm} and ρj , inf{n > 1 : Xn = j}. Conclude that
j is recurrent in this case.
(v) Let X be the simple random walk on Z (i.e. with probability 1/2 jumping
left/right). By constructing a suitable function f in Part (iv), show that X is
recurrent.
(vi) Let X be the simple random walk on Z2 (i.e. with probability 1/4 jumping
up/down/left/right in each step). By considering the function

f(k) ,

{
log(k2

1 + k2
2 − 1/2), k = (k1, k2) 6= (0, 0);

κ, k = (0, 0)
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with a suitably chosen κ, use the result of Part (iv) to show that X is recurrent.
(vii-a) Let X be the simple random walk on Z3. Define the function

fα(k) , (α2 + |k|2)−1/2, k = (k1, k2, k3) ∈ Z3

where α > 0 is a parameter to be specified later on. By algebraic manipulation,
show that fα is superharmonic if and only if

(
1− 1

M

)−1/2
>

1

6

3∑
i=1

(1 + 2xi)
1/2 + (1− 2xi)

1/2

(1− 4x2
i )

1/2
∀k ∈ Z3,

where M , 1 + α2 + |k|2 and xi , ki/M (i = 1, 2, 3).
(vii-b) Show that

1

2

(
(1 + ξ)1/2 + (1− ξ)1/2

)
6 1− 1

8
ξ2

for all ξ ∈ [−1, 1]. Conclude that

1

6

3∑
i=1

(1 + 2xi)
1/2 + (1− 2xi)

1/2

(1− 4x2
i )

1/2
6

1

3

3∑
i=1

1

(1− 4x2
i )

1/2
− 1

6
|x|2.

(vii-c) Show that there exists a universal constant β < 1, such that |2xi| 6 β for
all i = 1, 2, 3 and all α > 1. In addition, by considering the function (1 − y)−1/2

(y ∈ [0, β2]), show that

1

3

3∑
i=1

1

(1− 4x2
i )

1/2
6 1 +

2

3
|x|2 + C|x|4

where C is some universal constant.
(vii-d) By combining all the previous steps with the extra observation that(

1− 1

M

)−1/2
> 1 +

1

2M
,

show that fα is superharmonic provided that α is large enough. Use the result of
Part (iii) to conclude that X is transient.
(vii-e) By reducing to the three-dimensional case or otherwise, show that the
simple random walk on Zd (d > 4) is also transient.
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Exercise 6.9. (i) Show that log t 6 t/e for every t > 0 and conclude that

a log+ b 6 a log+ a+
b

e
∀a, b > 0,

where log+ t = max{log t, 0} (t > 0).
(ii) Let {Xt,Ft : t > 0} be a continuous, non-negative submartingale. Given
T > 0, set

X∗T , sup
t∈[0,T ]

Xt.

Let ρ : [0,∞)→ R be a continuous, increasing function with ρ(0) = 0. Show that

E[ρ(X∗T )] 6 E
[
XT

∫ X∗T

0

λ−1dρ(λ)
]
.

(iii) By choosing a function ρ(t) suitably, show that

E[X∗T ] 6
e

e− 1
(1 + E[XT log+XT ]).

Exercise 6.10. (Williams, 1991) A casino is proposing a new game called AL-
PHABETALPHA. The dealer rolls a die with 26 faces (one letter per face) repeat-
edly. At every round, precisely one gambler enters the game and she bets in the
following way. She bets $1 on the first letter A in the string ALPHABETALPHA.
She quits if she loses, while if she wins the dealer pays her $26 dollars and she
bets all this amount on the second letter L at the next round. If she loses she
quits while if she wins again the dealer pays her $262 and she further bets all the
money on the third letter P at the next round. The strategy continues and she
quits the game when she loses at some point or she wins the entire string. Let Fn
denote the σ-algebra generated by the outcomes of the first n tosses.

(i) Let M = {Mn : n > 1} be the net gain of the casino up to the n-th round.
Show thatM is a martingale with uniformly bounded increments, i.e. there exists
C > 0 such that |Mn(ω)−Mn−1(ω)| 6 C for all ω, n.
(ii) Let τ be the first time that the string ALPHABETALPHA appears. Show
that there exist N > 1 and ε > 0, such that

P(τ 6 N + n|Fn) > ε a.s.

for all n > 1.
(iii) Show that the property in Part (ii) implies that

P(τ > kN + r) 6 (1− ε)k−1P(T > N + r) ∀k, r > 1.
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Use this inequality to deduce that E[τ ] <∞.
(iv) Prove the following extension of the optional sampling theorem: if X is a
discrete-time martingale with uniformly bounded increments and σ is an inte-
grable stopping time, then E[Xσ] = E[X0].
(v) Use the above steps to compute E[τ ].

Exercise 6.11. Let B be a one-dimensional Brownian motion.

(i) Define

Xt ,

{
tB1/t, t > 0;

0, t = 0,

Show that {Xt : t > 0} is also a Brownian motion.
(ii) Show that with probability one, there exist two sequences of positive times
sn ↓ 0, tn ↓ 0, such that Bsn < 0 and Btn > 0 for every n.
(iii) Show that with probability one, t 7→ Bt is not differentiable at t = 0. Conclude
that with probability one, t 7→ Bt is nowhere differentiable outside a set of zero
Lebesgue measure.
(iv) Let s < u < t. Compute E[Bu|σ(Bs, Bt)].

Exercise 6.12. Let B be a one-dimensional {Ft}-Brownian motion.

(i) Suppose that τ is an integrable, {Ft}-stopping time. Show that E[Bτ ] = 0 and
E[B2

τ ] = E[τ ].
(ii) Find an example of a stopping time τ for which E[Bτ ] 6= 0.
(iii) Find an example of two stopping times σ 6 τ with E[σ] <∞, such that

E[B2
σ] > E[B2

τ ].

Exercise 6.13. Let B = {(Xt, Yt) : t > 0} be a two-dimensional Brownian motion
starting at the point (0, 1). Let τ be the first time that B hits the x-axis.

(i) Show that Xτ is a standard Cauchy random variable, i.e. with probability
density function 1

π(1+x2)
(x ∈ R).

(ii) Use the result of Part (i) to compute the characteristic function of the standard
Cauchy distribution.
(iii) For each r > 1, define τr , inf{t : Yt = r}. Show that the process {Xτr : r >
1} has independent increments.
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(iv) Denote H , {(x, y) : y > 0} as the upper-half plane. Let f be a bounded,
uniformly continuous function on R. Use the result of Part (i) to show that the
unique harmonic function u(x, y) on H (i.e. ∆u = 0 on H) that satisfies u|∂H = f
is given by

u(x, y) =

∫
R
Py(x− t)f(t)dt,

where
Py(x) ,

y

π(x2 + y2)
, (x, y) ∈ H

is the so-called Poisson kernel on the upper-half plane.

Exercise 6.14. Let Bb(R) denote the space of bounded, Borel measurable func-
tions on R. Define a family of linear operators Pt : Bb(R) → Bb(R) (t > 0)
by

(Ptf)(x) , E[f(x+Bt)], f ∈ Bb(R),

where B is a one-dimensional {Ft}-Brownian motion starting at the origin.

(i) Show that Pt+s = Pt ◦ Ps for any s, t > 0.
(ii) Let τ be a finite {Ft}-stopping time. Show that

E[f(Bτ+t)|Fτ ] = Ptf(Bτ ) ∀f ∈ Bb(R).

(iii) Let σ, τ be two finite {Ft}-stopping times such that τ ∈ Fσ and σ 6 τ. Show
that

E[f(Bτ )|Fσ] = Ptf(x)
∣∣
t=τ−σ,x=Bσ ∀f ∈ Bb(R).

Is it always true that Bτ −Bσ and Fσ are independent?

Exercise 6.15. The aim of this problem is to prove Khinchin’s law of the iterated
logarithm for Brownian motion:

P
(
lim
t→0

Bt√
2t log log 1/t

= 1
)

= 1.

(i) By using the exponential martingale eαBt−α2t/2, show that

P
(

sup
06s6t

(
Bs −

αs

2

)
> β

)
6 e−αβ ∀t, α, β > 0.
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(ii) Define h(t) ,
√

2t log log 1/t. Let 0 < θ, δ < 1 be given. By taking

α , (1 + δ)θ−nh(θn), β , h(θn)/2

in Part (i), show that with probability one,

sup
06s6θn−1

Bs 6
(1 + δ

2θ
+

1

2

)
h(θn) for all sufficiently large n.

Conclude that with probability one,

Bt 6
(1 + δ

2θ
+

1

2

)
h(t) for all sufficiently small t.

Use this to deduce that lim
t→0

Bt√
2t log log 1/t

6 1 a.s.

(iii) By using the second Borel-Cantelli lemma, show that with probability one,

Bθn > (1−
√
θ)h(θn) +Bθn+1 for infinitely many n.

Use this fact and the result of Part (i) to deduce that with probability one,

Bθn > (1−
√
θ)h(θn)− 2h(θn+1) for infinitely many n.

Conclude that lim
t→0

Bt√
2t log log 1/t

> 1 a.s.

Exercise 6.16. (Le Gall, 2013) Let {Bt : t > 0} be a one-dimensional Brownian
motion. Define the running maximum process

St , sup
06s6t

Bs, t > 0.

(i) Establish the following analytic fact. Let b : [0,∞) → R be a continuous
function with b(0) = 0 and define

s(t) , sup
06s6t

b(s), t > 0.

Let I be an open interval on [0,∞) that does not intersect the set {t : s(t) = b(t)}.
Show that ∫ ∞

0

(s(u)− b(u))1I(u)ds(u) = 0.
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Deduce that ∫ ∞
0

(s(u)− b(u))f(u)ds(u) = 0

for any bounded, Borel measurable function f : [0,∞)→ R.
(ii) Let f be a bounded, continuous function on [0,∞) and define F (x) ,

∫ x
0
f(y)dy.

Use the result of Part (i) to show that

(St −Bt)f(St) = F (St)−
∫ t

0

f(Su)dBu.

(iii) For each given λ > 0, show that the process

e−λSt + λ(St −Bt)e
−λSt

is a martingale with respect to the Brownian filtration.
(iv) Let c > 0 and define τ , inf{t : St − Bt = c}. Show that τ <∞ a.s. and Sτ
has the exponential distribution with parameter 1/c.

Exercise 6.17. (Revuz-Yor 1991; Karlin-Taylor 1981) This problem investigates
several arcsine laws related to the Brownian motion. Let B be a one-dimensional
Brownian motion. Define the random times

σ , sup{t < 1 : Bt = 0}, τ , inf{t > 0 : Bt = S1}, ζ , inf{t > 1 : Bt = 0}

and

A+
1 ,

∫ 1

0

1{Bt>0}dt,

where S1 , sup
06t61

Bt.

(i) Let 0 < s < t. Show that

P
(
Bu 6= 0 ∀u ∈ [s, t]

)
=

2

π
arccos

√
s

t
.

(ii) Show that both of σ and τ are distributed according to the arcsine law:

P(σ 6 t) = P(τ 6 t) =
2

π
arcsin

√
t, t ∈ [0, 1]. (6.2)
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(iii) Show that the joint density function of (σ, ζ) is given by

fσ,ζ(s, t) =
1

2π
s−1/2(t− s)−3/2, 0 < s < 1 < t.

Find the probability density function of ζ−σ (the length of the Brownian excursion
across the time t = 1).
(iv) The aim of this part is to show that A+

1 also obeys the same arcsine law (6.2).
(iv-a) Let β > 0 be an arbitrary parameter. Define

v(t, x) , E
[

exp
(
− β

∫ t

0

1{Bxs>0}ds
)]
, (t, x) ∈ [0,∞)× R,

where Bx
t represents a Brownian motion starting at x. Show that v(t, x) satisfies

the PDE
∂v

∂t
=

{
−βv + 1

2
∂2v
∂x2
, t > 0, x > 0;

1
2
∂2v
∂x2
, t > 0, x 6 0,

subject to the relations{
v(0+, x) = 1, x ∈ R,
v(t, 0+) = v(t, 0−), ∂v

∂x
(t, 0+) = ∂v

∂x
(t, 0−), t > 0.

(iv-b) Define

V (x;λ) ,
∫ ∞

0

e−λtv(t, x)dt, λ > 0, x ∈ R.

Show that V (x;λ) satisfies the ODE

1

2

∂2V (x;λ)

∂x2
−
(
λ+ β1{x>0}

)
V (x;λ) + 1 = 0, x ∈ R

subject to the relations

V (0+;λ) = V (0−;λ),
∂V

∂x
(0+;λ) =

∂V

∂x
(0−;λ).

(iv-c) By solving the ODE in Part (iv-b) explicitly, show that

V (0;λ) =
1√

λ
√
λ+ β

. (6.3)
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(iv-d) By realising that (6.3) is the Laplace transform of the function

w(t) ,
∫ t

0

1

π
√
s
√
t− s

e−βsds,

conclude that v(t, 0) = w(t).
(iv-e) Use the above steps to conclude that A+

1 obeys the arcsine law (6.2).

Exercise 6.18. (Feller, 1951) Let Bx be a one-dimensional Brownian motion
starting at x ∈ R. Define pt(y) , 1√

2πt
e−y

2/2t.

(i) Show that the transition density function of the Brownian motion starting at
x > 0 before hitting zero is given by

P(Bx
t ∈ dy, t < τx0 ) =

(
pt(y − x)− pt(y + x)

)
dy, y > 0,

where τx0 , inf{t : Bx
t = 0}. In addition, given y > 0 show that

P(τx0 > t|Xt = y) = 1− e−2xy/t.

(ii) Let α, β > 0. Show that

P(Bt 6 αt+ β ∀t ∈ [0, 1]|B0 = B1 = 0) = 1− e−2β(α+β).

(iii) Define
St , sup

06s6t
B0
s , It , inf

06s6t
B0
s .

It is known that the probability density function of B0
t before exiting the interval

(w, v) (w < 0, v > 0) is given by

P(B0
t ∈ dy, t < σw,v) =

∞∑
n=−∞

(
pt(2nv − 2nw − y)

− pt(2(n− 1)v − 2nw + y)
)
dy, y ∈ (w, v), (6.4)

where σw,v , inf{t : B0
t /∈ (w, v)}. Use this formula to show that the probability

density function of Rt , St − It (the range of Brownian motion) is given by

fRt(r) = 8
∞∑
n=1

(−1)n−1n2pt(nr), r > 0.
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Exercise 6.19. Let B be a one-dimensional Brownian motion.

(i) Show that X , {|Bt| : t > 0} is a strong Markov process with respect to its
natural filtration. In addition, its transition density function is given by

P(Xt ∈ dy|X0 = x) =

√
2

πt
exp

(
− x2 + y2

2t

)
cosh

(xy
t

)
dy, y > 0.

(ii) Let St , sup06s6tBs. By using the strong Markov property of Brownian
motion, show that the two-dimensional process t 7→ (St, St−Bt) is a strong Markov
process with respect to its natural filtration. In addition, given f : R+×R+ → R
and x0, y0 > 0, find an integral expression of

E[f(Ss+t, Ss+t −Bs+t)|(Ss, Ss −Bs) = (x0, y0)].

(iii) Use the above results to show that the two processes X and S −B have the
same distribution in the sense that

E
[
f(Xt1 , · · · , Xtn)

]
= E

[
f(St1 −Bt1 , · · · , Stn −Btn)

]
for any choices of n, t1 < · · · < tn and bounded, measurable f : Rn → R.

Exercise 6.20. Let c 6= 0 be a given fixed real number. Consider the process
Xx
t , Bx

t + ct where Bx is a one-dimensional Brownian motion starting at x ∈ R.

(i) Let W be the space of continuous paths on [0,∞) equipped with the natural
filtration {Ft} of the coordinate process. Let Qx (respectively, Px) denote the law
of Xx (respectively, Bx) over W . Show that for each t > 0, when restricted to
Ft the probability measure Qx is absolutely continuous with respect to Px with
density function

dQx

dPx
∣∣
Ft

(w) = ec(wt−x)−c2t/2, w ∈ W .

Is it true that Qx is absolutely continuous to Px on B(W) (the σ-algebra generated
by the coordinate process on [0,∞))?
(ii) Define St = sup06s6tX

0
s . Compute the joint density function of (St, X

0
t ).

(iii) Given θ ∈ R and λ > 0, define the process Mt , exp(θX0
t − λt). Find the

suitable relation between θ and λ, under which the process {Mt} is a martingale.
(iv) Let a 6= 0 and define τ 0

a , inf{t : X0
t = a}. By using the exponential

martingale in Part (iii), compute the Laplace transform of τ 0
a and P(τ 0

a <∞).
(v) Suppose that c > 0. Let σ , sup{t : X0

t = 0}. Show that

P(σ > t|FBt ) = e−2cmax{X0
t ,0},

176



where {FBt : t > 0} is the natural filtration of {B0
t }. Use this relation to derive

the probability density function of σ.

Exercise 6.21. (i) Find a solution to Skorokhod’s embedding problem for the
discrete uniform distribution on {−2,−1, 0, 1, 2}.
(ii) Describe the way of constructing a solution to Skorokhod’s embedding problem
for the uniform distribution over (−1, 1).
(iii) Let f(x) be a given probability density function on R with mean zero and
finite variance σ2. Define

µ(dx, dy) , c(y − x)f(x)f(y)dxdy, x < 0 < y

where c > 0 is the normalising constant so that µ is a joint probability density
function. Suppose that there exists a random vector (X, Y ) such that (X, Y ) is
µ-distributed and it is independent of the Brownian motion B. Use (X, Y ) and
B to construct a random time τ such that Bτ has probability density function f
and E[τ ] = σ2.

Exercise 6.22. (Kakutani, 1944) Let B = {Bt : t > 0} be a d-dimensional
Brownian motion with d > 5. The aim of this problem is to show that with
probability one, B does not have self-intersections, i.e.

P(Bs = Bt for some s 6= t) = 0. (6.5)

(i) Let I , [s0, s1], J , [t0, t1] be given fixed where s1 < t0. Show that

P(Bs = Bt for some s ∈ I, t ∈ J)

6 P(|Bt0 −Bs1| 6 2η) + P
(

sup
s∈I
|Bs −Bs1| > η

)
+ P

(
sup
t∈J
|Bt −Bt0 | > η

)
.

(ii) Show that ∫ ∞
x

e−u
2/2du 6

1

x
e−x

2/2 ∀x > 0.

(iii) Let m > 1 be an arbitrary positive integer. Partition the intervals I, J into
m even sub-intervals:

I = ∪mk=1Ik, J = ∪mk=1Jk.
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By choosing a suitable η = ηm (depending on m) applied to the decomposition in
Part (i) with (I, J) = (Ik, Jl), show that

lim
m→∞

m∑
k,l=1

P(Bs = Bt for some s ∈ Ik, t ∈ Jl) = 0.

(iv) Conclude that (6.5) holds.

Exercise 6.23. (Khoshnevisan, 2003) Let B = {Bt : t > 0} be a d-dimensional
Brownian motion with d > 2. For I ⊆ [0,∞), denote B(I) , {Bt : t ∈ I} as the
image of the Brownian trajectory over I. The aim of this problem is to show that
with probability one, B([0,∞)) has zero Lebesgue measure.

(i) Show that
E[|B([a, b])|] <∞ ∀a < b,

where | · | denotes the Lebesgue measure on Rd.
(ii) Show that

E[|B([0, 2])|] = 2d/2E[|B([0, 1])|].

(iii) Show that

E[|B([0, 2])|] = 2E[|B([0, 1])|]− E[|B([0, 1]) ∩B′([0, 1])|],

where B′ denotes another d-dimensional Brownian motion that is independent of
B.
(iv) Use the above steps to deduce that

E[|B([0, 1])|] = 0.

(v) Conclude that with probability one, B([0,∞)) has zero Lebesgue measure.

Exercise 6.24. The aim of this problem is to study recurrence/transience proper-
ties of multidimensional Brownian motions. Let Bx be a d-dimensional Brownian
motion starting at x.

(i) Let f be an arbitrary smooth function on Rd with compact support. Show
that the process

Mt , f(Bx
t )− f(x)− 1

2

∫ t

0

(∆f)(Bx
s )ds
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is a martingale with respect to the natural filtration of Bx.
(ii) Show that f(x) , log |x| (in dimension d = 2) and f(x) = |x|2−d (in dimension
d > 3) are harmonic functions on Rd\{0} (i.e. ∆f(x) = 0 for every x 6= 0).
(iii) Let 0 < a < |x| < b. Define τxa (respectively, τxb ) to be the hitting time of
the sphere Sa , {y ∈ Rd : |y| = a

}
(respectively, the sphere Sb) by the Brownian

motion Bx. By choosing a suitable f based on Parts (i) and (ii), compute the
probabilities P(τxa < τxb ) and P(τxa <∞) in all dimensions d > 2.
(iv) Let U be a non-empty, bounded open subset of Rd. Define σxU = sup{t : Bx

t ∈
U} to be the last time that Bx visits U . Show that P(σxU =∞) = 1 in dimension
d = 2, while P(σxU <∞) = 1 in dimension d > 3.
(v) Let y ∈ Rd and define ζxy , inf{t > 0 : Bx

t = y}. Show that P(ζxy <∞) = 0 in
all dimensions d > 2.

Exercise 6.25. LetM be a square integrable continuous martingale with respect
to its natural filtration.

(i) Define 〈M〉∞ , lim
t→∞
〈M〉t. Show that E[〈M〉∞] <∞ if and only if there exists

a square integrable random variable M∞ such that

lim
t→∞

E
[
|Mt −M∞|2

]
= 0.

(ii) Show that M is a Gaussian process if and only if the quadratic variation
of M is deterministic (i.e. there exists a continuous, non-decreasing function
f : [0,∞)→ R vanishing at the origin, such that with probability one 〈M〉t = f(t)
for all t). In this case, M has independent increments.

Exercise 6.26. Let {µt : t > 0} and {σt : t > 0} be given uniformly bounded,
progressively measurable processes defined on some given filtered probability space
(Ω,F ,P; {Ft}).
(i) Construct an Itô process X that satisfies the following equation

Xt = 1 +

∫ t

0

Xsµsds+

∫ t

0

XsσsdBs, t > 0.

Show that such a process X is unique.
(ii) Suppose that there exists a constant C > 0 such that σt(ω) > C for all t and
ω. Given fixed T > 0, construct a probability measure QT on FT that is equivalent
to P, under which X becomes an {Ft}-martingale.
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Exercise 6.27. (Clark, 1970) Let B = {Bt : 0 6 t 6 1} be a one-dimensional
Brownian motion.

(i) Let Y ,
∫ 1

0
Btdt. Find the unique progressively measurable process Φ such

that

Y = E[Y ] +

∫ 1

0

ΦtdBt.

(ii) Define S1 , sup06t61Bt. By writing E[S1|FBt ] as a function of (t, St, Bt), find
the unique progressively measurable process Φ such that

S1 = E[S1] +

∫ 1

0

ΦtdBt.

(iii) In this part, we explore a general method of constructing martingale repre-
sentations explicitly. Such a method is based on preliminary ideas from stochastic
calculus of variations (the Malliavin calculus). In what follows, let (W ,B(W), µ)
be the canonical Wiener space (cf. Definition 3.11). The coordinate process is
denoted as Bt(w) , wt (w ∈ W). Recall that Bt is a Brownian motion under
µ. The natural filtration of B is denoted as {Ft} . Let F : W → R be a given
B(W)-measurable function. We make the following basic assumptions on F :

(A) E[F 2] <∞ where E denotes the expectation under µ.
(B) There exists a constant K > 0, such that

|F (w + η)− F (w)| 6 K‖η‖∞ ∀w, η ∈ W .

(C) There exists a kernel F ′(w, dt) (for each w ∈ W , F ′(w, ·) is a finite signed
measure on [0, 1]) such that for any η ∈ C1[0, 1], one has

lim
ε→0

1

ε

(
F (w + εη)− F (w)

)
=

∫ 1

0

ηtF
′(w, dt) for µ-almost all w ∈ W .

(iii-a) Let θ = {θt : 0 6 t 6 1} be a bounded continuous, {Ft}-adapted process
and set Θt ,

∫ t
0
θsds. Given ε > 0, define

Zε , exp
(
ε

∫ 1

0

θtdBt −
1

2
ε2

∫ 1

0

θ2
t dt
)
.

Show that
E[F (B)] = E[F (B − εΘ)Zε].
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(iii-b) Use Part (iii-a) and the assumptions on F to deduce that

E
[
F (B)

∫ 1

0

θtdBt

]
= E

[ ∫ 1

0

ΘtF
′(B, dt)

]
. (6.6)

(iii-c) Let Φ = {Φt} be the martingale representation for the random variable F ,
i.e.

F = E[F ] +

∫ 1

0

ΦtdBt.

Show that

E
[ ∫ 1

0

θtΦtdt
]

= E
[ ∫ 1

0

θtΨtdt
]
,

where Ψt , E[F ′(B, (t, 1])|Ft].
(iii-d) Use Part (iii-c) to deduce that Φt = Ψt µ-a.s.
(iii-e) Use this method to solve Part (i) and Part (ii) again.

Exercise 6.28. (McKean, 1969) Let Φ be an Itô integrable process with respect
to a one-dimensional Brownian motion B. Suppose that

∫∞
0

Φ2
tdt <∞ a.s.

(i) Show that ∫ ∞
0

ΦtdBt , lim
t→∞

∫ t

0

ΦsdBs

exists a.s. In addition, if E
[ ∫∞

0
Φ2
tdt
]
<∞, then E

[ ∫∞
0

ΦtdBt

]
= 0 and

E
[( ∫ ∞

0

ΦtdBt

)2]
= E

[ ∫ ∞
0

Φ2
tdt
]
.

(ii) Suppose that E
[

exp
(

1
2

∫∞
0

Φ2
tdt
)]
<∞. Show that

E
[

exp
(
i

∫ ∞
0

ΦtdBt +
1

2

∫ ∞
0

Φ2
tdt
)]

= 1.

(iii) Construct an example of Φ, such that 0 <
∫∞

0
Φ2
tdt <∞ while

∫∞
0

ΦtdBt = 0.

Exercise 6.29. Consider a stochastic integralMt =
∫ t

0
ΦsdBs defined over a right

continuous filtered probability space (Ω,F ,P; {Ft}) (i.e. Ft+ = Ft for all t). Let
At ,

∫ t
0

Φ2
sds and suppose that A∞ =∞ a.s. For each t > 0, define

Ct , inf{s > 0 : As > t}
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to be the generalised inverse of A and set Wt ,MCt .

(i) Show that Ct is an {Fs}-stopping time.
(ii) Let t1 < · · · < tn and θ1, · · · , θn ∈ R. Show that

E
[

exp
(
i

n∑
j=1

θjWtj

)]
= exp

(
− 1

2

n∑
j,k=1

θjθktj ∧ tk
)
.

Conclude that {Wt : t > 0} is a Brownian motion and thus Mt = WAt is the
time-change of a Brownian motion.
(iii) Let τ be an {Ft}-stopping time. Show that

P
(

sup
06t<τ

|Mt| > x,Aτ 6 y
)
6 2e−

x2

2y , ∀x, y > 0.

How do you interpret this property heuristically?

Exercise 6.30. Consider the n-order iterated Itô integral

In ,
∫ 1

0

( ∫ tn

0

· · ·
( ∫ t2

0

dBt1

)
· · · dBtn−1

)
dBtn .

(i) Compute the variance of In.
(ii) Show that E[ImIn] = 0 if m 6= n.
(iii) Let τ , inf{t > 0 : Bt /∈ (−1, 1)}. By considering suitable Hermite polyno-
mials, compute E[τ 2].
(iv) Show that

nIn = B1In−1 − In−2.

Use this result to show that

nHn(x) = xHn−1(x)−Hn−2(x),

where Hn(x) denotes the n-th Hermite polynomial.

Exercise 6.31. (Helmes-Schwane, 1983) Let B = {(Xt, Yt) : 0 6 t 6 T} be a
two-dimensional Brownian motion. Define

L ,
1

2

( ∫ T

0

XtdYt −
∫ T

0

YtdXt

)
.

182



The aim of this problem is to compute the characteristic function of L.

(i) If x, y : [0, T ] → R are smooth paths, what is the geometric interpretation of
the integral 1

2

∫ T
0

(xty
′
t − ytx′t)dt?

(ii) Write L =
∫ T

0
〈ABt, dBt〉 with a suitable deterministic 2× 2 matrix A, where

Bt is written as a column vector and 〈·, ·〉 denotes the Euclidean inner product on
R2.
(iii) Define

h(γ, µ) , E[ei〈γ,BT 〉+µL], γ ∈ R2, µ ∈ R.

Show that there exists c > 0, such that h(γ, µ) is finite for all γ ∈ R2 and
µ ∈ (−c, c).
(iv) Fix µ ∈ (−c, c) as in Part (iii). Let k(t) be the solution to the following ODE{

k′(t) = −µ2 − k(t)2, 0 6 t 6 T ;

k(T ) = 0,

and set K(t) ,
( k(t) 0

0 k(t)

)
. Construct a probability measure P̃ on FT , under

which

B̃t , Bt −
∫ t

0

(K(s) + µA)Bsds, 0 6 t 6 T

is a Brownian motion and

h(γ, λ) = Ẽ
[

exp
(
i〈γ,BT 〉 −

1

4

∫ T

0

k(t)〈Bt, dBt〉 −
1

8

∫ T

0

k′(t)|Bt|2dt
)]
,

(v) By applying Itô’s formula to the process Yt , k(t)|Bt|2 and finding k(t)
explicitly, show that h(0, µ) = 1

cosµT/2
. Conclude that the characteristic function

of L is given by

E[eiλL] =
1

coshλT/2
, λ ∈ R.

(vi) Let H(t) ∈ Mat(2, 2) be the solution to the following matrix equation:{
H ′(t) = (K(t) + µA)H(t),

H(0) = Id.

Show that Bt = H(t)
∫ t

0
H(s)−1dB̃s. Use this fact to obtain a closed-form expres-

sion of h(γ, µ).
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(vii) Use the result of Part (vi) to show that the conditional characteristic function
of L given BT = z (z ∈ R2) is expressed as

E
[
eiλL|BT = z

]
=

λT

2 sinh(λT/2)
exp

( |z|2
2T

(
1− λT

2
coth

λT

2

))
, λ ∈ R.

Exercise 6.32. (Kent, 1978) Let B be a d-dimensional Brownian motion starting
at the origin. Let S , {x ∈ Rd : |x| = 1} denote the unit sphere in Rd.

(i) Define τ , inf{t : Bt ∈ S}. Describe the distribution of Bτ . Show that Bτ and
τ are independent.
(ii) Consider the process Xt , Bt+ct where c ∈ Rd is a given fixed vector. Define
σ , inf{t : Xt ∈ S}. By using Girsanov’s transformation theorem or otherwise,
show that Xσ and σ are independent. How do you convince yourself about this
property heuristically?
(iii) Show that the probability density function of Xσ with respect to the nor-
malised uniform measure on S is given by

fXσ(x) = E[e−|c|
2τ/2] · exp

(
〈c, x〉Rd

)
, x ∈ S.

Exercise 6.33. The aim of this problem is to explore how the ideas of stochastic
calculus can be applied to prove theorems in complex analysis and algebra. A
function f : U → C defined on an open subset U ⊆ C is said to be differentiable
at z0 ∈ U if there exists a complex number w0 such that

lim
z→z0

f(z)− f(z0)

z − z0

= w0.

In this case, we denote w0 as f ′(z0). The function f is said to be holomorphic
in U if it is differentiable at every point in U . Usual algebraic rules for real
differentiation hold in the same way for complex variables. A basic property of
holomorphic functions is the following so-called Cauchy-Riemann equations:

∂u

∂x
=
∂v

∂y
,
∂u

∂y
= −∂v

∂x
∀(x, y) ∈ U,

where we have expressed f in terms of its real and imaginary parts: f(z) =
u(x, y) + iv(x, y) (z = x+ iy). It is also true that f ′(z) = ∂xu+ i∂xv.

(i) [Liouville’s Theorem] Suppose that f is a uniformly bounded, holomorphic
function on C. Let B be a two-dimensional Brownian motion. Explain why
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{Ref(Bt)} and {Imf(Bt)} are both bounded martingales. By using the martin-
gale convergence theorem for {Ref(Bt)} or otherwise, conclude that f must be a
constant function.
(ii) [Fundamental Theorem of Algebra] Use the result of Part (i) to show that
every non-constant polynomial f : C → C has a root, i.e. f(z) = 0 for some
z ∈ C.
(iii) [Maximum Principle for Harmonic Functions ] Let u : U → R be a harmonic
function on a bounded, connected open subset U ⊆ C. Suppose that

B̄(z0, r) , {z : |z − z0| 6 r} ⊆ U.

By considering the process {u(Bz0
t ) : t > 0} (Bz0 is a Brownian motion starting

at z0), show that

u(z0) =
1

2π

∫ 2π

0

u(z0 + reiθ)dθ.

Use this result to show that u can only attain maximum/minimum at the bound-
ary of U unless u is a constant function.

Exercise 6.34. This problem is a continuation of Exercise 6.33. Let Bt = Xt+iYt
be a two-dimensional Brownian motion. Let f be a non-constant holomorphic
function on C.

(i) Show that

f(Bt) = f(B0) +

∫ t

0

f ′(Bs)dBs,

where f ′ is the complex derivative of f , the integral is the Itô integral but the
product f ′(Bs)dBs is understood as the complex multiplication.
(ii) It is known from complex analysis that there are at most countably many
points at which f ′ = 0. Define

Ct ,
∫ t

0

|f ′(Bs)|2ds.

Show that with probability one, t 7→ Ct is strictly increasing and C∞ =∞.
(iii) By extending the method for Exercise 6.29 (ii), show that there exists a
two-dimensional Brownian motion W such that

f(Bt) = f(B0) +WCt .
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Exercise 6.35. (Revuz-Yor, 1991) Let Bt = Xt+ iYt be a two-dimensional Brow-
nian motion starting at z = 1. Define t 7→ θt ∈ R to be the unique continuous
determination of the argument of Bt ∈ C with θ0 = 0 (the total winding number
of B around the origin up to time t)

In other words, {θt} is a process with continuous sample paths such that

Bt = Rte
iθt , θ0 = 0,

where Rt , |Bt|. The aim of this problem is to establish the renowned Spitzer’s
law :

2θt
log t

dist.−→ C as t→∞ (6.7)

where C denotes the standard Cauchy distribution.

(i) Under complex multiplication, define

Lt ,
∫ t

0

B−1
s dBs, t > 0.

Explain why Lt is well-defined for all time. Show that there exists a two-dimensional
Brownian motion (β, γ) starting at the origin, such that

Lt = βCt + iγCt ,

where Ct ,
∫ t

0
R−2
s ds.

(ii) By using integration by parts for Bt · e−Lt , conclude that Bt = eLt .
(iii) Show that ReLt = logRt. By using the SDE of the Bessel process R or
otherwise, show that t 7→

∫ t
0
e2βsds is the inverse function of t 7→ Ct. Use this fact

to conclude that the processes β and R generate the same σ-algebra. As a result,
γ and R are independent.
(iv) For each r > 1, define σr , inf{t : |Bt| = r}. By using the result of Exercise
6.13 (i), show that θσr/ log r is a standard Cauchy random variable.
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(v) Let W be a two-dimensional Brownian motion starting at the origin, and set
ζ , inf{t : |Wt| = 1}. Show that

θt − θσ√t
dist.−→ Im

( ∫ 1

ζ

dWs

Ws

)
as t→∞,

where Im(·) denotes the imaginary part of a complex number. As a result,

(θt − θσ√t)/ log t→ 0 in prob.

as t→∞. Use this property and Part (iv) to conclude the result of (6.7). Compare
this asymptotic behaviour with Exercise 6.40 (ii).

Exercise 6.36. The aim of this problem is to obtain Itô’s formula for f(Bt),
where B is a one-dimensional Brownian motion and f(x) , |x|. Note that f is
not differentiable at x = 0.

(i) For each ε > 0, define

fε(x) ,

{
|x|, |x| > ε;
1
2
(ε+ x2/ε), |x| < ε.

Sketch the graph of fε and show that fε converges to f uniformly on R as ε→ 0.
(ii) Show that

fε(Bt) = fε(B0) +

∫ t

0

f ′ε(Bs)dBs +
1

2ε

∣∣{s ∈ [0, t] : Bs ∈ (−ε, ε)}
∣∣,

where | · | denotes the Lebesgue measure on [0,∞).
(iii) For each t > 0, show that∫ t

0

f ′ε(Bs)1(−ε,ε)(Bs)dBs → 0

in the sense of L2.
(iv) Show that the limit

Lt , lim
ε→0

1

2ε

∣∣{s ∈ [0, t] : Bs ∈ (−ε, ε)}
∣∣

exists in L2 and

|Bt| = |B0|+
∫ t

0

sgn(Bs)dBs + Lt,
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where

sgn(x) ,

{
−1, x 6 0;

1, x > 0.

(v) Show that the the process {Lt : t > 0} has non-decreasing sample paths, and
its induced Lebesgue-Stieltjes measure is carried by the zero level set {t : Bt = 0},
i.e. ∫ ∞

0

1{Bt 6=0}(t)dLt = 0.

Exercise 6.37. (i) Consider the differential operator

A =
1

2
aij(x)

∂2

∂xi∂xj
+ bi(x)

∂

∂xi

where a : Rn → Mat(n, n) and b : Rn → Rn are given bounded functions. Let X
be an Rn-valued process satisfying the martingale formulation with generator A,
i.e. the process

M f
t , f(Xt)− f(X0)−

∫ t

0

(Af)(Xs)ds

is a martingale for every f ∈ C2
b (Rn). What is the quadratic variation process of

M f?
(ii) Consider the case when n = 1:

A =
1

2
a(x)

d2

dx2
+ b(x)

d

dx
,

where a ∈ C1
b is assumed to be a strictly positive function. Identify a suitable

function H : R→ R such that

Wt , H(Xt)−H(X0)−
∫ t

0

(AH)(Xs)ds

is a Brownian motion and

Xt = X0 +

∫ t

0

√
a(Xs)dWs +

∫ t

0

b(Xs)ds.

Conclude that a process X satisfies the martingale formulation with generator A
if and only if it is an Itô diffusion process with diffusion coefficient

√
a and drift

coefficient b with respect to some Brownian motion.
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Exercise 6.38. Let B = {Bt : 0 6 t 6 1} be a one-dimensional Brownian motion.

(i) Define Xt , Bt − tB1 (0 6 t 6 1). Show that Xt is a Gaussian process and
compute its covariance function ρ(s, t) , E[XsXt].
(ii) Find the solution {Yt : 0 6 t < 1} to the SDE{

dYt = dBt − Yt
1−tdt, 0 6 t < 1,

Y0 = 0.

Show that Yt has the same law as Xt (0 6 t < 1). Conclude that lim
t↑1
Yt = 0 almost

surely.
(iii) Given x, y ∈ R, define the process

Xx,y = {Xx,y
t , Bx

t + t(y −Bx
1 ) : 0 6 t 6 1}

where Bx = {Bx
t : 0 6 t 6 1} is a one-dimensional Brownian motion starting

at x. Let µx (respectively, µx,y) be the law of the process Bx (respectively, Xx,y)
over the space W of continuous paths on [0, 1]. Show that µx,y coincides with the
conditional distribution of Bx given Bx

1 = y, in the sense that

Eµx [Φ|Bx
1 ] = Eµx,Bx1 [Φ] µx-a.s.

for all bounded measurable functions Φ :W → R.
(iv) Use the result of Part (iii) to show that

P
(

sup
06t61

X0,0
t > x

)
= e−2x2 , x > 0.

Exercise 6.39. Let X, Y be two Itô processes (possibly with respect to multidi-
mensional Brownian motions). Define a new type of stochastic integration by

Zt ,
∫ t

0

Xs ◦ dYs , lim
mesh(P)→0

∑
ti∈P

Xti−1
+Xti

2
·
(
Yti − Yti−1

)
,

where P denotes an arbitrary partition of [0, t].

(i) Show that Z is also an Itô process and identify its decomposition into the sum
of an Itô integral and a Lebesgue integral.
(ii) For any smooth function f on R, show that

f(Xt) = f(X0) +

∫ t

0

f ′(Xs) ◦ dXs.
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In particular, the integral X ◦ dY obeys the chain rule of ordinary calculus.
(iii) A vector field on Rn is a function V : Rn → Rn that assigns a vector
V (x) = (V 1(x), · · · , V n(x)) at every point x ∈ Rn. A vector field V can also be
viewed as a differential operator acting on smooth functions:

(V f)(x) ,
n∑
i=1

V i(x)
∂f(x)

∂xi
, f ∈ C∞(R).

Let B = {(B1
t , · · · , Bd

t ) : t > 0} be a d-dimensional Brownian motion and let
V1, · · · , Vd be d vector fields on Rn with bounded derivatives of all orders. Show
that there exists a unique Rn-valued progressively measurable process X = {Xt}
that satisfies the following equation

X i
t = xi +

d∑
α=1

V i
α(Xt) ◦ dBα

t , i = 1, · · · , n

with given initial condition X0 = x ∈ Rn.
(iv) Under the setting of Part (iii), show that the generator of X is given by

Af =
1

2

d∑
α=1

Vα(Vαf).

In addition, for any smooth function f , one has

f(Xt) = f(x) +
d∑

α=1

∫ t

0

(Vαf)(Xs) ◦ dBα
s .

Exercise 6.40. Let B be a one-dimensional Brownian motion.

(i) Consider the vector field W (x, y) = (−y, x) on R2.

190



Let Xt ∈ R2 be the solution to the SDE

dXt = W (Xt) ◦ dBt

with initial condition X0 = (1, 0) defined in the sense of Exercise 6.39 (iii) (n = 2,
d = 1). Show that Xt stays on the unit circle, i.e. |Xt| = 1 for all time. What if
the integral “◦” is replaced by the Itô integral?
(ii) Let Nt ∈ Z (t > 0) denote the total number of loops that Xt has winded
around the origin (an anti-clockwise loop is counted as +1 and a clockwise loop
is counted as −1). Show that Nt/

√
t converges to N(0, 1

4π2 ) in distribution as
t→∞.
(iii) Given a, b > 0, let {(Xt, Yt) : t > 0} be the unique solution to the SDE{

dXt = −1
2
Xtdt− a

b
YtdBt,

dYt = −1
2
Ytdt+ b

a
XtdBt

with initial condition (X0, Y0) = (a, 0). Show that (Xt, Yt) stays on the standard
ellipse {(x, y) : x2/a2 + y2/b2 = 1} for all time. Find the expected amount of time
that the process takes to complete one exact loop.

Exercise 6.41. Define for r > 0 the sphere Sr , {(x, y, z) : x2 + y2 + z2 = r2}.
Let {e1, e2, e3} be the standard orthonormal basis of R3. For α = 1, 2, 3, define the
vector field Wα on R3 by setting Wα(ξ) (ξ ∈ Sr) to be the orthogonal projection
of r · eα onto the tangent plane of Sr at ξ. Let X = {Xξ

t : ξ ∈ Sr, t > 0} be the
solution to the SDE {

dXξ
t =

∑3
α=1 Wα(Xξ

t ) ◦ dBα
t , t > 0;

Xξ
0 = ξ ∈ Sr

(6.8)

defined in the sense of Exercise 6.39 (iii) (n = d = 3).

(i) Show that Xξ lives on Sr for all time.
(ii) The spherical Laplacian ∆S1 on S1 is defined by

(∆S1f)(ξ) , (∆f̂)(ξ), f ∈ C2(S1),

where f̂ : R3\{0} → R is the extension of f defined by f̂(η) , f(η/|η|) and ∆ is
the usual Laplace operator on R3. Show that the generator of {Xξ : ξ ∈ S1} is
1
2
∆S1 in the sense that

lim
t→0

E
[
f(Xξ

t )
]
− f(ξ)

t
=

1

2

(
∆S1f

)
(ξ) ∀f ∈ C2(S1).
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(iii) Let XS
t be the unique solution to the SDE (6.8) starting at the south pole of

S1. Consider the stereographic projection defined in the figure below which maps
S1\{north pole} bijectively onto the plane R2.

Let Yt denote the projected point of XS
t on the plane and let Rt be the distance

between Yt and the south pole. Establish a one-dimensional SDE for the process
Rt.
(iv) What is the probability that the process XS

t hits the north pole in finite time?

Exercise 6.42. Define a Lorentz metric ∗ on R3 by

ξ ∗ η , x1x2 + y1y2 − z1z2, ξ = (x1, y1, z1), η = (x2, y2, z2) ∈ R3.

The two-dimensional hyperboloid is the surface in R3 defined by

H , {ξ = (x, y, z) : ξ ∗ ξ = −1, z > 0}.

Given ξ, η ∈ H, the hyperbolic distance d(ξ, η) between ξ and η is determined by

cosh d(ξ, η) = −ξ ∗ η.

Let o , (0, 0, 1)T be the distinguished base point of H.

(i) Sketch the graph of H in R3.
(ii) Let (r, θ) be the geodesic polar coordinates on H determined by

ξ = (x, y, z) ∈ H\{o} : x = sinh r cos θ, y = sinh r sin θ, z = cosh r.
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Describe the geometric meaning of r and θ.
(iii) Let G be the group of 3× 3 matrices A = (a1, a2, a3) such that

a1 ∗ a1 = a2 ∗ a2 = −a3 ∗ a3 = 1; ai ∗ aj = 0 ∀i 6= j; a3
3 > 0,

where ai is regarded as a column vector in R3. Show that G acts on H by
isometries, i.e.

d(A · ξ, A · η) = d(ξ, η) ∀A ∈ G, ξ, η ∈ H.

Describe the action of

A =

(
S 0
0T 1

)
, S : 2× 2 orthogonal matrix

on H geometrically.
(iv) Define the linear map

F : R2 → Mat(2, 2), F (u, v) ,

 0 0 u
0 0 v
u v 0

 .

Let Wt , (Ut, Vt) be a two-dimensional Brownian motion. Consider the following
Mat(3, 3)-valued SDE {

dΓt = F (◦dWt) · Γt, t > 0;

Γ0 = Id,

where ◦dWt indicates the stochastic integrals are defined in the sense of Exercise
6.39. Show that with probability one, Γt ∈ G for all t.
(v) Let ξ be a fixed point on H that has unit distance from o. Define Bt , Γt ·ξ =
(Xt, Yt, Zt)

T . Establish an SDE for Bt in R3.
(vi) Let (Rt,Θt) be the polar coordinates of Bt defined by Part (ii). Establish
an SDE for (Rt,Θt) and write down its generator as a second order differential
operator in the (r, θ)-coordinates.
(vii) Use Part (vi) to show that Rt is a one-dimensional diffusion

dRt = dβt + cothRtdt,

where βt is a one-dimensional Brownian motion.
(viii) Show that

lim
t→∞

d(Bt, o)

t
= 1 a.s.
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In other words, Bt approximately travels a distance of t when t is large. This
behaviour is drastically different from the case of an Euclidean Brownian motion,
which travels in the order of

√
t as t→∞.

(ix) Give ε ∈ (0, 1), denote τε as the first time that Bt enters the ε-neighbourhood
of o with respect to the hyperbolic distance. Show that

P(τε = +∞) > 0.

As a result, Bt is transient on H. This behaviour is also different from the case
of a planar Brownian motion which is neighbourhood-recurrent (cf. Exercise 6.24
(iv)).

Exercise 6.43. (Doss, 1977; Sussman, 1977) Consider the following one-dimensional
SDE {

dXx
t = σ(Xx

t )dBt + b(Xx
t )dt, t > 0;

Xx
0 = x ∈ R,

(6.9)

where the coefficients σ, b : R → R satisfy the Lipschitz condition. Define the
function ϕ(x, t) by the differential equation

∂ϕ(x, t)

∂t
= σ(ϕ(x, t)), ϕ(x, 0) = x.

(i) Let w : [0,∞)→ R be a smooth path with w0 = 0. Define the path t 7→ ξxt by
the differential equation

dξxt
dt

= b
(
ϕ(ξxt , wt)

)
exp

(
−
∫ wt

0

σ′(ϕ(ξxt , s))ds
)
, ξx0 = x. (6.10)

Show that the function t 7→ ϕ(ξxt , wt) is the solution to the equation

dxt =
(
σ(xt)w

′
t + b(xt)

)
dt, x0 = x.

(ii) How do you adapt the method of Part (i) to construct the solution to the
SDE (6.9)?
(iii) Suppose that b− 1

2
σ′ · σ = 0 and σ > 0 on R. Show that for each fixed t > 0,

the random variable Xx
t has a probability density function. Obtain a formula for

this density.
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Exercise 6.44. Consider the following SDE:{
dXt = dBt + b(Xt)dt, t > 0;

X0 = 0,

where B is a one-dimensional Brownian motion and b ∈ C1
b (R).

(i) Let f : R → R be a given function. Derive a formula for computing E[f(Xt)]
in terms of a Brownian motion.
(ii) Suppose that

∫
R |b(x)|dx <∞. Show that with probability one,

lim
t→∞

Xt =∞, lim
t→∞

Xt = −∞.

(iii) Let c > 0 be a given parameter. In each of the following scenarios, discuss
the limiting behaviour of Xt as t→∞:
(iii-a) b(x) = 0 when x 6 0 and b(x) = c/x when x > 1;
(iii-b) b(x) = c/x when |x| > 1.

Exercise 6.45. This problem investigates a few explicit examples of one-dimensional
diffusions.

(i) Let β ∈ R be a given fixed number. Consider the SDE{
dXt = X2β−1

t dt+Xβ
t dBt,

X0 = 1

defined up to its intrinsic explosion time

e , inf{t > 0 : Xt /∈ I}.

(i-a) Let 0 < a < 1 < b. Compute the probability that Xt exits the interval [a, b]
from the right endpoint b.
(i-b) Show that with probability one,

lim
t↑e

Xt = +∞.

(i-c) Suppose that β = 2. Solve the SDE explicitly and conclude that P(e <
∞) = 1.
(ii) Consider the following stochastic population growth model:{

dXt = Xt(K −Xt)dt+XtdBt,

X0 = x > 0,
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where K > 0 is a given constant.
(ii-a) By considering Yt = logXt or otherwise, solve the SDE explicitly.
(ii-b) Show that Xt never reaches zero nor explodes to infinity in finite time.
Discuss the behaviour of Xt as t→∞.
(iii) Consider the following interest rate model:{

dRt = (1−Rt)dt+
√
RtdBt,

R0 = r > 0.

(iii-a) Define Xt , Rte
t. Establish the SDE for Xt.

(iii-b) Show that there exists a deterministic time change t 7→ c(t) (i.e. a contin-
uous, increasing function with c(0) = 0) such that ρ = {ρt , Xc(t) : t > 0} is a
squared Bessel process. Conclude that Rt = e−tρ(et−1)/4.
(iii-c) Let St be the solution to the following SDE:{

dSt = Stdt+ S
3/2
t dBt, t > 0,

S0 = x > 0.

By investigating the relationship between St and Rt, represent St in terms of a
Bessel process. Conclude that {St} never reaches zero nor explodes to infinity in
finite time.

Exercise 6.46. (Rogers-Williams, 2000) The aim of this problem is to study
the evolution of random ellipses in the plane (the behaviour of Brownian motion
taking values in the space of ellipses with unit area). In this problem, we use
matrix notation exclusively.

In planar Euclidean geometry, it is classical that there is a one-to-one corre-
spondence between the space E of ellipses centered at the origin with unit area
and the space S of 2 × 2 positive definite, symmetric matrices with determinant
one, which is given by

matrix Y ∈ S ←→ ellipse EY = {z ∈ R2 : zTY z = 1} ∈ E .

Under this correspondence, the major (respectively, minor) semi-axis of the ellipse
EY is equal to the larger (respectively, smaller) eigenvalue of Y . In addition, if
one orthogonally diagonalises Y by writing

Y =

(
cos γ − sin γ
sin γ cos γ

)(
λ 0
0 1/λ

)(
cos γ sin γ
− sin γ cos γ

)
(6.11)
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with λ > 1 being the larger eigenvalue of Y , then the vector (cos γ, sin γ) represents
the direction of the minor semi-axis.

(i) Let Bt ,
( W 1

t /
√

2 W 2
t

W 3
t −W 1

t /
√

2

)
where (W 1

t ,W
2
t ,W

3
t ) is a three-dimensional

Brownian motion. Consider the Mat(2, 2)-valued SDE

dGt = dBt ·Gt +
1

4
Gtdt

with initial condition given by a fixed non-identity matrix. Show that with prob-
ability one, Gt has determinant one for all t.
(ii) Define Yt , GT

t Gt. Show that

dYt = GT
t (dBt + dBT

t )Gt + 2Ytdt.

(iii) Denote the eigenvalues of Yt as e±Ut (Ut > 0). By using the relation
Tr(Yt) = eUt + e−Ut , establish a one-dimensional SDE for Ut.
(iv) Show that with probability one, Ut never reaches zero and Ut/t converges to
1 as t→∞. Interpret this property geometrically in the context of ellipses.
(v) Let γt be the continuous determination of the angle appearing in the orthogo-
nal diagonalisation (6.11) of the matrix Yt. By extending the method for Exercise
6.29 (ii), show that there exists a one-dimensional Brownian motion W that is
independent of {Ut}, such that

γt = W
( ∫ t

0

1

2
csch2Usds

)
.

Use this fact and Part (iv) to deduce that γ∞ , lim
t→∞

γt exists a.s. What is the
distribution of γ∞? Interpret γt and γ∞ geometrically in the context of ellipses.
(vi) Let (x0, y0) ∈ R2 be a fixed vector. Define (xt, yt)

T , Gt · (x0, y0)T and set
Rt ,

√
x2
t + y2

t . Show that Rt has a log-normal distribution. Use this fact to
derive the p-th moment Lyapunov exponent of Rt as

lim
t→∞

t−1 logE[Rp
t ] =

p(p+ 2)

4
, ∀p > 0.

Exercise 6.47. Let ϕ : Rn → R be a given smooth function with bounded
derivatives of all orders. Define the second order differential operator

Af ,
1

2
∆f + 〈∇ϕ,∇f〉Rn for all smooth f.
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(i) Find a stochastic representation of the solution to the following PDE:{
∂u
∂t

+Au = λu, (t, x) ∈ [0, T ]× Rn;

u(T, ·) = ψ.

where ψ : Rn → R is a given bounded continuous function.
(ii) We construct a stochastic process X̃ in the following way. Let X be an Itô
diffusion process with generator A an let ξ ∼ exp(λ) be an exponential random
variable that is independent of X. Define

X̃x
t ,

{
Xx
t , t < ξ;

∂, t > ξ,

where ∂ denotes an artificial “coffin state”. In other words, X̃ is obtained by
“killing” the original diffusion immediately after ξ. Show that X̃ is a strong Markov
process with respect to its natural filtration. Compute the generator of X̃, i.e.
find the limit

(Ãf)(x) , lim
t→0+

E[f(X̃x
t )]− f(x)

t

for any given smooth function in Rn with compact support (we trivially extend
such f to a function f̂ : Rn ∪ {∂} → R by setting f̂(∂) , 0).
(iii) Find a stochastic representation of the bounded solution to the following
PDE:

λu−Au = f on Rn,

where f is a given bounded continuous function on Rn.
(iv) Let u(t, x) be as in Part (i) with λ = 0. Show that

u(t, x) = E
[

exp
(
−
∫ T−t

0

Φ(Bx
s )ds

)
·exp

(
ϕ(Bx

T−t)−ϕ(x)
)
·ψ(Bx

T−t)
]
, 0 6 t 6 T,

where Bx
t denotes a Brownian motion starting at x and

Φ(x) ,
1

2
∆ϕ(x) +

1

2
|∇ϕ(x)|2.

Exercise 6.48. Let D , {x ∈ Rd : |x| < 1} be the unit open ball on Rd. Denote
L2(D) as the Hilbert space of square integrable functions on D with respect to the
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Lebesgue measure. It is a classical result in PDE theory (spectral decomposition
of the Dirichlet Laplacian) that there exist a sequence of real numbers

0 < λ0 < λ1 6 λ2 6 · · · 6 λn 6 · · · ↑ ∞

and an orthonormal basis {φn : n > 0} ⊆ C∞b (D) of L2(D), such that{
−∆φn = λnφn in D,
φn = 0 on ∂D

for each n. In addition, φ0 > 0 everywhere in D, and there exists N > 1 such
that the series

∞∑
n=0

1

λNn
φn(x)φn(y)

converges absolutely and uniformly on D ×D.
(i) For each f ∈ C(D) vanishing at the boundary ∂D, verify that the function

u(t, x) ,
∞∑
n=0

e−λnt/2〈f, φn〉L2(D)φn(x)

is the solution to the initial-boundary value problem
∂u
∂t
− 1

2
∆u = 0, (t, x) ∈ (0,∞)×D,

u(0, x) = f(x), x ∈ D,
u(t, x) = 0, (t, x) ∈ [0,∞)× ∂D.

(ii) Define
τx , inf

{
t > 0 : |Bx

t | > 1
}

where Bx denotes a Brownian motion starting at x ∈ Rd. Under the same as-
sumption as in Part (i), show that

u(t, x) = E
[
f(Bx

t ); τx > t
]
, (t, x) ∈ [0,∞)×D.

(iii) Show that there exists c > 0 such that E[ecτx ] <∞ for all x ∈ D.
(iv) Show that

P
(

sup
06t61

|B0
t | < ε

)
∼ Ce−

λ0
2ε2 as ε→ 0,

where C , φ0(0)
∫
D
φ0(x)dx and the notation ϕ(ε) ∼ ψ(ε) means limε→0

ϕ(ε)
ψ(ε)

= 1.
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Exercise 6.49. (Carmona-Molchanov, 1995) Let ξ = {ξ(x) : x ∈ Rd} be a mean
zero, stationary Gaussian field with continuous sample paths. In other words, ξ
satisfies the following properties:

(A) (ξ(x1), · · · , ξ(xm)) is a mean zero Gaussian vector and

(ξ(x1 + h), · · · , ξ(xm + h))
dist.
= (ξ(x1), · · · , ξ(xm)) ∀h ∈ Rd,

where x1, · · · , xm, h is an arbitrary collection of points;
(B) with probability one, the sample function Rd 3 x 7→ ξ(x) is a continuous
function.

Let u(t, x) be the solution to the following (stochastic) PDE:{
∂u
∂t

(t, x) = 1
2
∆u+ u(t, x) · ξ(x), (t, x) ∈ (0,∞)× Rd;

u(0, x) ≡ 1.

The randomness of u comes from the randomness of ξ and the above equation is
solved pathwisely for each sample function of ξ(·). The aim of this problem is to
show that

lim
t→∞

1

t2
logE[u(t, x)p] =

p2

2
Q(0) ∀p ∈ N, x ∈ R, (6.12)

where
Q(x) , E[ξ(0)ξ(x)], x ∈ Rd

denotes the covariance function of ξ. This result indicates that in the long run,
the p-th moment of u(t, x) grows like ep2Q(0)t2/2.

(i) Show that u(t, x) admits the following stochastic representation:

u(t, x) = Ê
[

exp
( ∫ t

0

ξ(Bx
s )ds

)]
, t > 0, x ∈ Rd.

Here Bx
t denotes a d-dimensional Brownian motion starting at x, which is defined

on some probability space (Ω̂, F̂ , P̂) that is independent from the randomness of
ξ. The expectation Ê is taken with respect to the randomness of this Brownian
motion.
(ii) Let p ∈ N. Show that

mp(t, x) , E[u(t, x)p] = Ê
[

exp
(1

2

p∑
i,j=1

∫ t

0

∫ t

0

Q(Bx,i
u −Bx,j

v )dudv
)]
, (6.13)
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where {Bx,1, · · · , Bx,p} denote p independent copies of a d-dimensional Brownian
motion starting at x defined on some probability space (Ω̂, F̂ , P̂).
(iii) Show that |Q(x)| 6 Q(0) for all x. Use this property and Part (ii) to show
that

E[u(t, x)p] 6 e
p2Q(0)t2

2 ∀t.
(iv) Give ε > 0, let δ > 0 be such that

|x| < δ =⇒ |Q(x)−Q(0)| < ε.

Let λ0 > 0 be the principal eigenvalue of 1
2
∆ on the unit ball with Dirichlet

boundary condition (cf. Exercise 6.48). By restricting the expectation (6.13) on
the event

{|Bx,i
s − x| < δ/2 ∀s ∈ [0, t], i = 1, · · · , p}

and using the result of Exercise 6.48, show that
1

t2
logmp(t, x) >

p2(Q(0)− ε)
2

− Cλ0pδ
2

t
∀t sufficiently large

with some constant C > 0.
(v) Conclude the asymptotics property (6.12) from the above steps.

Exercise 6.50. (Ikeda-Watanabe, 1989) Consider the following one-dimensional
SDE {

dXt = b(Xt)dt+ dBt, 0 6 t 6 1;

X0 = 0,

where b : R → R satisfies the Lipschitz condition. Let φ : [0, 1] → R be a twice
continuously differentiable function with φ0 = 0. The aim of this problem is to
study the asymptotic behaviour of the probability

Cφ(ε) , P
(
‖X − φ‖∞ < ε

)
and identify those paths φ for which Cφ(ε) is maximised in the asymptotics ε→ 0.
Heuristically, such maximisers φ are the “mostly preferred” trajectories for the
diffusion X.

(i) Define ψt , φt −
∫ t

0
b(φs)ds. Construct a probability measure Q under which

the process B̃t , Bt − ψt is a Brownian motion. Show that

Cφ(ε) = exp
(
− 1

2

∫ 1

0

ψ̇2
t dt
)
·

· EQ[ exp
(
−
∫ 1

0

ψ̇tdBt +

∫ 1

0

ψ̇2
t dt
)
1{‖X−φ‖∞<ε}

]
.
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(ii) By using integration by parts, show that

lim
ε→0

EQ[ exp
(
−
∫ 1

0

ψ̇tdBt +

∫ 1

0

ψ̇2
t dt
)∣∣‖X − φ‖∞ < ε

]
= 1.

Hence conclude that

Cφ(ε) ∼ exp
(
− 1

2

∫ 1

0

ψ̇2
t dt
)
·Q
(
‖X − φ‖∞ < ε

)
as ε→ 0.

(iii) Define b̃(t, x) , b(x+φt)− b(φt) and Yt , Xt−φt. Show that Yt satisfies the
following SDE:

dYt = dB̃t + b̃(t, Yt)dt.

(iv) Construct another probability measure Q̃ under which Yt is a Brownian mo-
tion. Conclude that

Q
(
‖X − φ‖∞ < ε

)
∼ Eµ

[
exp

( ∫ 1

0

b̃(t, βt)dβt
)
1{‖β‖∞<ε}

]
as ε→ 0,

where β is the canonical Brownian motion and µ is the Wiener measure.
(v) By using integration by parts, show that

Eµ
[

exp
( ∫ 1

0

b̃(t, βt)dβt
)∣∣‖β‖∞ < ε

]
∼ exp

(
−
∫ 1

0

b′(φt)dt
)
· Eµ

[
exp

(
−
∫ 1

0

βtb
′(βt + φt)dβt

)∣∣‖β‖∞ < ε
]

as ε→ 0.

(vi) Show that

Eµ
[

exp
(
−
∫ 1

0

βtb
′(βt + φt)dβt

)∣∣‖β‖∞ < ε
]
∼ exp

(1

2

∫ 1

0

b′(φt)dt
)
.

Hence conclude that

Q
(
‖X − φ‖∞ < ε

)
∼ exp

(
− 1

2

∫ 1

0

b′(φt)dt
)
· Pµ(‖β‖∞ < ε) as ε→ 0.

(vii) Combine the previous steps as well as the result of Exercise 6.48 (iv) to
conclude that

Cφ(ε) ∼ 4

π
exp

(
− 1

2

∫ 1

0

((
φ̇t − b(φt)

)2
+ b′(φt)

)
dt
)
· e−

π2

8ε2 as ε→ 0.
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(viii) Fix y ∈ R. Denote I0,y as the space of twice continuously differentiable
functions φ such that φ0 = 0 and φ1 = y. Suppose that φy ∈ I0,y minimises the
function

J(φ) ,
∫ 1

0

((
φ̇t − b(φt)

)2
+ b′(φt)

)
dt, φ ∈ I0,y.

Show that φy satisfies the following ODE

φ̈t = b(φt)b
′(φt) +

1

2
b′′(φt).

(ix) Identify the minimiser φy ∈ I0,y of J(φ) in the cases when b = 0 and b(x) = αx
(α 6= 0). Heuristically, φy maximises the “probability”

I0,y 3 φ 7→ lim
ε→0

Cφ(ε)e
π2

8ε

among all paths in I0,y. In other words, the paths φy (y ∈ R) are the “mostly
preferred paths” for the diffusion {Xt}.
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Appendix A Terminology from probability theory
We collect a few notions and tools from probability theory that are quoted in
these notes.

(1) A sample space is a non-empty set Ω. A σ-algebra is a class F of subsets such
that

Ω ∈ F ; A ∈ F =⇒ Ac ∈ F ; An ∈ F ∀n =⇒ ∪nAn ∈ F .

A probability measure on F is a set function P : F → [0, 1] such that:

(i) P(A) > 0 for all A ∈ F ;
(ii) P(Ω) = 1;
(iii) for any sequence {An : n > 1} ⊆ F of disjoint events (i.e. Am ∩An = ∅ when
m 6= n), one has

P(∪∞n=1An) =
∞∑
n=1

P(An).

Such a triple (Ω,F ,P) is called a probability space.

(2) The Borel σ-algebra over Rn, denoted as B(Rn), is the smallest σ-algebra
(equivalently, the intersection of all those σ-algebras) containing the following
class of subsets:

(a, b] , {x = (x1, · · · , xn) : ai < xi 6 bi ∀i}, a, b ∈ Rn.

A function f : Rn → R is said to be Borel measurable if

f−1A , {x ∈ Rn : f(x) ∈ A} ∈ B(Rn) ∀A ∈ B(R).

(3) Let (Ω,F ,P) be a given fixed probability space. A random variable is a
function X : Ω → R such that {ω : X(ω) 6 x} ∈ F for all x ∈ R. Let
{Xt : t ∈ T } be a given family of random variables. The σ-algebra generated by
this family, denoted as σ(Xt : t ∈ T ), is the smallest σ-algebra containing the
following class of subsets:

{ω : Xt(ω) ∈ A}, t ∈ T , A ∈ B(R).

More generally, the notation σ(· · · ) denotes the σ-algebra generated by (i.e. the
smallest σ-algebra containing) whatever is listed inside the bracket.
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(4) A subset N ⊆ Ω is called a P-null set if there exists E ∈ F such that P(E) = 0
and N ⊆ E. A property P is said to hold almost surely (a.s.) or with probability
one if the set of ω for which P does not hold is a P-null set. For instance, a
random series

∑∞
n=1Xn is convergent a.s. if the set

{
ω ∈ Ω :

∞∑
n=1

X(ω) is not convergent
}

is a P-null set.

(5) Let {An : n > 1} ⊆ F be a sequence of events. We define

lim
n→∞

An ,
∞⋂
n=1

∞⋃
m=n

Am = {ω : there are infinitely many n s.t ω ∈ An}

to be the event that “An occurs infinitely often”. Respectively, we define

lim
n→∞

An ,
∞⋃
n=1

∞⋂
m=n

Am = {ω : ω ∈ An for all sufficiently large n}

to be the event that “An happens eventually”. By definition,(
lim
n→∞

An
)c

= lim
n→∞

Acn

is the event that “there are at most finitely many An’s happening” or equivalently
“An does not happen for all sufficiently large n”. It is often the case that these
events are either P-null sets or have probability one. One particular situation,
which is the content of the (first) Borel-Cantelli lemma, is used in the construction
of stochastic integrals.

Theorem A.1. (i) [The first Borel-Cantelli lemma] Suppose that

∞∑
n=1

P(An) <∞.

Then
P
(

lim
n→∞

An
)

= 0.

In other words, with probability one there are at most finitely many An’s happen-
ing.
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(ii) [The second Borel-Cantelli lemma] Suppose that {An : n > 1} are independent
and

∞∑
n=1

P(An) =∞.

Then
P
(

lim
n→∞

An
)

= 1.

(6) The mathematical expectation is an integration map X 7→ E[X] defined as
follows. If X is a simple random variable, say X =

∑m
i=1 ci1Ai then

E[X] ,
m∑
i=1

ciP(Ai).

For a general non-negative random variable X, one approximates it by an increas-
ing sequence {Xn : n > 1} of simple functions and define

E[X] , lim
n→∞

E[Xn].

If X has arbitrary sign, its expectation is defined as

E[X] , E[X+]− E[X−],

where X+ , max{X, 0} and X− , max{−X, 0} are both non-negative and X =
X+−X−. Sometimes E[X] is also denoted as

∫
Ω
XdP. We say that X is integrable

if E[X] is finite.

(7) Let p, q > 1 be such that 1/p+ 1/q = 1. Hölder’s inequality asserts that

|E[XY ]| 6 ‖X‖p‖Y ‖q (A.1)

for any random variables X ∈ Lp, Y ∈ Lq, where ‖X‖p , (E[|X|p])1/p and we
say X ∈ Lp if ‖X‖p < ∞. By taking p = q = 2 and Y = 1, (A.1) becomes the
following so-called Cauchy-Schwarz inequality

|E[X]|2 6 E[X2]. (A.2)

It is a simple consequence of Hölder’s inequality that [1,∞) 3 p 7→ ‖X‖p is
non-decreasing.
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(8) Let P,Q be two probability measures on F . We say that Q is absolutely
continuous with respect to P if

A ∈ F , P(A) = 0 =⇒ Q(A) = 0.

In this case, the Radon-Nikodym theorem asserts that there exists a non-negative
P-integrable function X : Ω→ R, denoted as dQ

dP (the density function of Q with
respect to P), such that

Q(A) =

∫
A

XdP ∀A ∈ F .

(9) A random vector (X1, · · · , Xn) is jointly Gaussian with mean vector µ and
covariance matrix Σ if its joint density function is given by

fX1,··· ,Xn(x) =
1

(2π)d/2
√

det Σ
exp

(
− 1

2
(x− µ)T · Σ−1 · (x− µ)

)
, x ∈ Rn.

This is equivalent to saying that

E
[
ei(θ1X1+···+θnXn)

]
= exp

(
θT · µ− 1

2
θT · Σ · θ

)
∀θ = (θ1, · · · , θn) ∈ Rn.

(10) Let X, Y be random variables. We say that X, Y are independent if any of
the following three equivalent statements holds true:

(i)P(X 6 x, Y 6 y) = P(X 6 x)P(Y 6 y) for any x, y ∈ R;
(ii) E[f(X)g(Y )] = E[f(X)]E[g(Y )] for any bounded, Borel measurable functions
f, g : R→ R;
(iii) E[ei(sX+tY )] = E[eisX ]E[eitY ] for any s, t ∈ R.

Two sub-σ-algebras G,H ⊆ F are said to be independent if

P(A ∩B) = P(A) · P(B) ∀A ∈ G, B ∈ H.

One can also talk about the independence between X and a sub-σ-algebra G:

P({X ∈ A} ∩B) = P(X ∈ A) · P(B) ∀A ∈ B(R), B ∈ G.

More generally, a family of random variables {Xt : t ∈ T } and G are independent
if

P({(Xt1 , · · · , Xtn) ∈ Γ} ∩B) = P((Xt1 , · · · , Xtn) ∈ Γ) · P(B)
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for any choices of n > 1, t1, · · · , tn ∈ T , Γ ∈ B(Rn) and B ∈ G. An equivalent
characterisation, which is used in the proofs of the strong Markov property for
Brownian motion and Lévy’s characterisation theorem, is the following statement
in terms of joint characteristic functions:

E[ξ · ei(θ1Xt1+···θnXtn )] = E[ξ]E[ei(θ1Xt1+···θnXtn )]

for any choices of n, ti ∈ T , θi ∈ R and bounded, G-measurable ξ.

(11) The notion of product spaces is useful for constructing independent random
variables. Let (Ωn,Fn,Pn) (n > 1) be given probability spaces. Define

Ω∞ ,
∞∏
n=1

Ωn = {ω = (ω1, ω2, · · · ) : ωn ∈ Ωn ∀n}.

Let F∞ be the smallest σ-algebra over Ω containing the following subsets:

A1 × A2 × · · · × An × Ωn+1 × Ωn+2 × · · · (A.3)

for all choices of n > 1, Ai ∈ Ωi (1 6 i 6 n). Then there exists a unique
probability measure P∞ on F , such that the probability of the event (A.3) is
equal to

P1(A1)P2(A2) · · ·Pn(An).

The triple (Ω∞,F∞,P∞) is known as the product probability space of the given
sequence.

One can easily construct independent sequences by using the idea of product
spaces. For instance, take (Ωn,Fn,Pn) = (R,B(R), µ) for every n where µ is the
standard Gaussian measure on R. On the resulting product space (Ω∞,F∞,P∞),
define

Xn : Ω∞ → R, Xn(ω) , ωn.

Then {Xn : n > 1} is an i.i.d. sequence of standard normal random variables.

(12) It is often useful to know when the integral and limit signs can be exchanged.
There are three basic results that justify such a situation in different contexts.
We summarise them in the theorem below.

Theorem A.2. Let Xn (n > 1) and X, Y be random variables.

(i) [Fatou’s Lemma] Suppose that Xn > 0 a.s. Then

E
[

lim
n→∞

Xn

]
6 lim

n→∞
E[Xn].
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(ii) [Monotone Convergence Theorem] Suppose that

Xn > 0, Xn ↑ X a.s.

Then
lim
n→∞

E[Xn] = E[X].

(iii) [Dominated Convergence Theorem] Suppose that

Xn → X, |Xn| 6 Y a.s.

and Y is integrable. Then
lim
n→∞

E[Xn] = E[X].
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